
A Lightweight Videogame Dialogue Manager

James Ryan, Michael Mateas, and Noah Wardrip-Fruin
Expressive Intelligence Studio

University of California, Santa Cruz
{jor, michaelm, nwf}@soe.ucsc.edu

Proceedings of 1st International Joint Conference of DiGRA and FDG

©2016 Authors. Personal and educational classroom use of this paper is allowed, commercial use requires
specific permission from the author.

ABSTRACT
We present a fully procedural alternative to branching dialogue that is influenced by theories
from linguistic pragmatics and technical work in the field of dialogue systems. Specifically,
this is a dialogue manager that extends the Talk of the Town framework, in which non-player
characters (NPCs) develop and propagate subjective knowledge of the gameworld. While
previously knowledge exchange in this framework could only be expressed symbolically,
such exchanges may now be rendered as naturalistic conversations between characters. The
larger conversation engine currently lacks a player interface, so in this paper we demonstrate
our dialogue manager through conversations between NPCs. From an evaluation task, we
find that our system produces conversations that flow far more naturally than randomly
assembled ones. As a design objective, we have endeavored to make this dialogue manager
lightweight and agnostic to its particular application in Talk of the Town; it is our hope that
interested readers will consider porting its straightforward design to their own game engines.

Keywords
dialogue management, conversation, non-player characters, natural language generation

INTRODUCTION
Nearly thirty years after its influential early use in games like Space Rogue (1989) and The
Secret of Monkey Island (1990), branching dialogue still prevails in game design today as
the dominant approach to implementing character conversations (Freed, 2014). The funda-
mental appeal of this approach is that it supports extended dialogue interaction while still
providing guarantees about content coherence. This is because branching dialogue is au-
thored in directed graphs that explicitly define all valid conversations as the possible paths
through those graphs. Due to this explicitness, incoherent conversations can only occur
during gameplay as a result of authoring errors, which are easier to correct than complex
runtime procedures are to debug. These guarantees about content coherence, however, come
at the cost of authoring ease, player agency, and dynamism to system state.

Branching dialogue is hard to author. Like all directed graphs, conversation graphs with
even modest branching factors may blow up after just a handful of levels in the graph. As
such, authors of such graphs often force branches to converge onto one another as a way of
tempering this unwieldy growth, but this tactic tends to make the specification less readable
(and thus more difficult to work with). Even with dedicated software at hand, these no-
tions work to make the authoring of branching dialogue both burdensome and cumbersome
(Bateman and Adams, 2007; Freed, 2014).

Branching dialogue also inhibits player agency. At any decision point, the range of dialogue
options is typically explicitly presented to the player, but players do not appreciate decision



points with many explicit choices (Szilas and Ilea, 2014)—because of this (and because
graphs become less manageable as the branching factor grows), the effective choice space
at player decision points is typically limited, and this of course damages player agency.
Moreover, the authoring tactic of branch convergence renders some player choices mean-
ingless and, worse, even signals this meaninglessness to the player (Wardrip-Fruin, 2009).

Finally, the rigid linking of content in these graphs makes it difficult to author conversations
that are dynamic to the underlying system state. Authors may place flags on graph nodes to
specify that certain dialogue options only be available when some variable aspect of system
state holds (Wardrip-Fruin, 2009), but because an author must explicitly link these nodes to
other nodes, she effectively must compose whole paths through the graph that are appro-
priate with regard to that aspect of system state. But games can get into very many states,
many of which may not be anticipated at authoring time, and it is not feasible to author entire
conversations for each, or even many. As such, games tend to feature conversations that are
appropriate across most variations of system state, but this yields dialogue interactions that
are rarely dynamic to (potentially interesting) changes in the state.

In this paper, we present a fully procedural alternative to branching dialogue that is relatively
easy to author for, is designed to foster player agency, and may yield dialogue interactions
that are highly dynamic to the system state. Just as story management works to disentangle
the inextricable linking of nodes in a branching story graph by employing a policy for dy-
namically selecting story events (Mateas, 2005), ourmethod disentangles the graph structure
of branching dialogue by employing a policy for dynamically selecting non-player charac-
ter (NPC) dialogue. Rather than specifying unwieldy directed graphs, by our approach an
author composes individual lines of dialogue and annotates them for the concerns central to
this selection policy. Because the policy may select an NPC response given any player di-
alogue selection, the player’s choice space is effectively the entire pool of dialogic content.
This advances player agency significantly, but it also presents the considerable challenge
of designing a player interface that facilitates selection from such a large choice space. As
discussed below, we are currently investigating potential interface solutions, and so in this
paper we demonstrate our dialogue manager by feeding it onto itself, i.e., by producing
conversations between NPCs (who each select dialogue using the same policy). Finally,
our method yields dialogue exchanges that are highly dynamic to the underlying system
state. Instead of composing whole conversations pertaining to individual state variations,
by our approach authors may quickly craft many variants of individual lines of dialogue
that each pertain to unique aspects of underlying state. Because content is not inextricably
linked at authoring time, our system is always free to select (at NPC conversation turns) the
particular variants that best express the underlying game state.

As we noted above, the fundamental appeal of branching dialogue is that it provides guar-
antees about conversational coherence. The potential drawback of our method, then, is that
our policy for selecting NPC dialogue could produce incoherent conversational sequences.
To test this, we elicited human judgements as to the naturalness of conversations produced
by our system. As we report below, procedural conversations yielded by our system were
rated as flowing more naturally than randomly assembled conversations.

The dialogue manager that we present here is an extension to an AI framework that we have

–2–



presented elsewhere, called Talk of the Town (Ryan et al., 2015). In this framework, NPCs
form and propagate subjective knowledge about other characters and places in the game-
world. The dialogue manager that we present here integrates with this framework to render
the exchange of such knowledge as naturalistic conversations between characters. More
precisely, certain lines of dialogue, when delivered to another character, assert propositions
about the gameworld that the receiving character may adopt as her own subjective belief
(which she may then propagate to other characters in the same way). Though we have im-
plemented our dialogue manager as an extension to this framework, we attempt to describe
its operation in this paper such that interested readers may port it to their own applications.
Finally, while we are employing natural language generation (NLG) to produce NPC dia-
logue in Talk of the Town, due to space considerations we limit our concerns in this paper
to the dialogue manager that handles conversation flow and sends targeted requests to the
NLG system (which we plan to present in a separate publication).

RELATED WORK
Our approach is rooted intellectually in prominent theories in the field of linguistic pragmat-
ics, namely speech act theory (which posits that utterances have pragmatic force; Austin,
1975), Grice’s cooperative principle (conversations are cooperative exchanges with implicit
rules; Grice, 1970), and Brown and Levinson’s politeness theory (speakers work to affirm
their interlocutors; Brown and Levinson, 1987). Architecturally, we adapt to the videogame
domain technical approaches from the field of dialogue systems; as we note below, we have
been particularly influenced by the work of David Traum and collaborators (Traum and
Allen, 1994; Traum and Larsson, 2003). Additionally, we view our current approach as a
generalized refinement of earlier work in which we procedurally recombined Prom Week
dialogue exchanges using a notion of speech acts (Ryan et al., 2014), and as an instantiation
of the modular content strategy that we have articulated elsewhere (Ryan et al., 2015).

A handful of systems in the videogame domain have supported procedural conversations.
Many parser-based interactive-fiction (IF) games have featured open-ended dialogue with
NPCs, but typically without any modeling of the conversation beyond valid player queries
and associated responses. Notable in this area, however, is the Threaded Conversation ex-
tension to the IF platform Inform 7, which supports stateful conversations with authorable
parameters for flowmanagement (Reed, 2010). Versu, also by Emily Short (in collaboration
with Richard Evans), takes this approach much further by modeling speech acts, which may
select who should speak next, what speech act that character should perform, and what topic
she should address (Short and Evans, 2013). Façade also employs a notion of speech acts, in
its case by mapping arbitrary player dialogue inputs to discrete acts that inform the operation
of its reactive-planning ecosystem, components of which select NPC dialogue (Mateas and
Stern, 2004). Bot Colony likewise maps free-text player input to speech acts (Joseph, 2012).
Very recently, the LabLabLab project has produced multiple games centered on freeform
conversation with NPCs, but without mapping to speech acts (Lessard, 2016). While con-
versations in Versu, Façade, and Bot Colony take place in real time, in our game, as in the
LabLabLab games, conversation proceeds by discrete turns. However, like the majority of
these systems, we rely crucially on a notion of speech acts, as we discuss below. Of all
the systems we have listed, it seems that Versu is most similar to ours. Characters in both
systems may pursue conversational goals, and both systems utilize a dialogue pool that is

–3–



available to all characters (but with contextual usage constraints asserted by authored pre-
conditions). Our system renders the exchange of character knowledge in natural language
and, similarly, characters in Versu form subjective beliefs that pertain to story concerns,
and the delivery of dialogue by one character may cause another to change her beliefs. The
major distinction of our contribution relative to the other work that we have outlined here
is that we have endeavored to produce a lightweight, streamlined design for a videogame
dialogue manager that does not make commitments to a specification environment, agent-
modeling approach, or game engine. Whereas, for instance, dialogue management in Versu
and Façade is deeply embedded in the Praxis (Evans and Short, 2014) and ABL (Mateas
and Stern, 2004) language environments, respectively, we endeavor here to support readers
who may seek to port our design to their own game applications with relative ease.

BACKGROUND: TALK OF THE TOWN
This work extends the Talk of the Town framework, which supports non-player characters
who build up knowledge of the gameworld that may then be propagated or may deteriorate
in a number of interesting ways (Ryan et al., 2015). In this section, we provide a brief
overview of this framework, focusing on its simulation of character knowledge, which we
have now integrated with the dialogue manager presented in this paper.

Each Talk of the Town gameworld is a procedurally generated American small town in which
NPCs build up knowledge about businesses, homes, and their fellow residents through first-
hand observation, as well as by hearing things from other people. Knowledge formation
and propagation (as well as deterioration) happens online during the simulation, in which
characters act out daily routines across day and night timesteps. A character’s compos-
ite knowledge of the world is structured as an ontology of interlinked mental models (Ryan
et al., 2015). Each mental model pertains to a particular entity (character, business, or home)
and is composed of a number of belief facets corresponding to particular attributes of that
entity (e.g., name, hair color, address). Crucially, characters adopt new belief facets (and
potentially revise existing ones) in response to evidence, and the strength of a given belief
facet is the sum total of the strength of all the pieces of evidence that support it. While we
have implemented nine types of evidence that work to characterize a wide array of knowl-
edge phenomena (Ryan et al., 2015), our purposes here concern only the four evidence types
that relate to character knowledge propagation:

• Statement. A statement occurs when a character says something about the world to
another character that she herself believes.

• Declaration. When a character delivers a statement, her own belief that she is im-
parting will grow stronger by virtue of her having uttered it; we call such buttressing
a declaration.

• Lie. A lie occurs when a character says something about the world to another char-
acter that she herself does not believe.

• Eavesdropping. An eavesdropping occurs when a nearby character overhears a state-
ment or lie for which they are not the intended recipient.

Upon encountering a new piece of evidence, a character will either adopt a new belief facet,
augment the strength of a currently held belief facets that it supports, or, if it contradicts her
current belief facet, enact a belief-revision procedure (Ryan et al., 2015). In this revision

–4–



procedure, the strength of the new evidence is weighed against the strength of the character’s
currently held belief facet that the new evidence contradicts. If the new evidence is stronger,
the character will revise her belief; if it is weaker, she will not revise her belief, but will
remember the evidence in the case that future evidence also supports it.

While previously we described our implementation of character knowledge propagation
as a trading of purely symbolic representations, in this paper we present an extension to
this framework in which knowledge is transmitted over the course of naturalistic character
conversations that are rendered in surface-level natural language. Below, we describe how
our dialogue manager integrates with the simulation of knowledge phenomena that we have
just outlined to instantiate statement, declaration, lie, and eavesdropping pieces of evidence
as knowledge is transmitted by natural-language utterances.

A LIGHTWEIGHT DIALOGUE MANAGER
In this section, we describe the dialogue manager that we have developed as an extension
to the Talk of the Town framework. As noted above, we have targeted a straightforward,
application-agnostic design so that others may port the system to their own applications.

Preliminary Definitions
For our purposes, a conversation is a dialogue exchange initiated by one character toward
another character that plays out over a series of turns, during each of which one character
delivers to the other character one line of dialogue. As this definition expresses, our sys-
tem currently only supports dyadic conversations, and the only notion of time at play here
is the progression of a conversation by discrete turns (i.e., we are not modeling real-time
conversation). Briefly, we will introduce terms for different types of conversational roles
that we will be using throughout the rest of the paper: a conversant is either character in
a conversation; an initiator is the character who initiates a conversation, in which case the
other character is the recipient; on a given conversation turn, the speaker is the character
who delivers a line of dialogue, and the other character is the interlocutor.

Core Notions
Before proceeding to discuss the operation of our dialogue manager in detail, in this sub-
section we first introduce a set of core notions that are central to this operation.

Dialogue Moves
The central notion underpinning our system is the dialogue move, a term we take from
dialogue systems research (Traum and Larsson, 2003) and appreciate for its ludic flavor.
Dialogue moves in our system are like speech acts, except messier and more numerous.
Rather than reifying only high-level discursive acts like ask or tell (or even relatively
more specific ones, like yes-no question or affirmative answer), in our authored set
of dialogue moves we feature, in addition to these staples, very low-level moves like ask
about the weather, tell where you work, say something positive, and confirm
or correct first name. By our approach, a set of dialogue moves is always extensible,
with new moves being added whenever an author deems it necessary or convenient. As
such, move sets will vary considerably by application and may become very large.

–5–



A line of dialogue may be delivered by a character to perform a dialogue move, and a given
line may perform multiple (potentially very many) dialogue moves. For illustration, we
offer a selection of disconnected example lines of dialogue that we have authored, along
with the dialogue moves that they perform in our system:

“Oh, greetings, Andrew.” greet, greet back, use interlocutor first name

“I’m alright. Yourself?” answer, answer how are you, answer how are you neutr-
ally, ask, ask how are you, make small talk

“Yes, the weather is wonderful.” agree, agree about the weather, agree that
the weather is good, say something positive, say something positive
about the weather, make small talk, talk about the weather

Conversational Obligations
The delivery of a given line of dialogue may obligate a conversational party to perform a
dialogue move on a subsequent conversation turn. As an example, in our system the line
What do you think about this weather? obligates the interlocutor to perform the dialogue
move assert about the weather on a subsequent turn. Speaks may even obligate them-
selves to perform some move, e.g., a line “There’s something I need to tell you...”. Here,
we again borrow from David Traum’s work, particularly the notion of discourse obligations
proffered by Traum and Allen (1994).

Conversational Goals
Characters may pursue conversational goals for which dialoguemoves serve as the planning
operators. A plan for a conversational goal consists of a series of steps, where each step is
either a dialogue move (to be performed by a certain conversational party) or a subgoal (with
a plan of its own that must be carried out); if the last step of a plan is realized, then the goal
is satisfied (regardless of whether any or all earlier steps have been realized). If the next step
in a character’s plan relies on the other character performing some move, the plan is on hold.
Currently, plans are not constructed dynamically, but instead are preauthored and stored in a
plan library. (As we discuss below, we intend in future work to have characters dynamically
construct conversational plans.) Below we provide examples of three goals (one of which
is a subgoal) and their associated plans. The step prefix [me] indicates that the goal pursuer
must perform themove specified by the step, while [them] requires the other conversational
party to perform the move, and [either] means the step will be realized if either character
performs the specified move.

• GOAL:LEARN NAME OF STRANGER IN PUBLIC
GOAL:INTRODUCE SELF TO STRANGER IN PUBLIC

[either] make small talk (x4)
[me] introduce self

[me] request name
[them] introduce self

• GOAL:END CONVERSATION
[me] wrap up conversation

–6–



[them] say goodbye
[me] say goodbye back

Note that, with regard to the goal LEARN NAME OF STRANGER IN PUBLIC, a character
could simply request another character’s name immediately at the beginning of a conver-
sation, but this would be brash and awkward. In the plan we have specified, the character
pursuing this goal will engage in small talk for several turns (and introduce herself) be-
fore requesting the other character’s name. This encodes normative social behavior, such
that characters pursuing goals may act believably and mannerly, even as such commitments
delay the satisfaction of their goals.

Above, we noted that conversational obligations prescribe that their obligated parties per-
form specified dialogue moves, but one might wonder why they do not instead prescribe
that certain conversational goals be pursued. The answer is that, from the perspective of
authorial control, we have found that it is powerful to use obligations as a governor of local
coherence and conversational goals as a governor of global (conversation-level) coherence.

Conversational Frames
The dialogue manager may activate initial obligations and goals from any of a set of con-
versational frames that we have hand-authored; here, we use the term ‘frame’ in a broad
Minskian sense (Minsky, 1977). Whether the dialogue manager will activate a given frame
depends on the social context of the conversation. More technically, a frame will be acti-
vated if its preconditions are met, given the state of the world at the start of the conversation.
Let us illustrate by again providing implemented examples:

• FRAME:FACE-TO-FACE
Preconditions: conversation modality is face-to-face
Initiator obligations: greet

• FRAME:PHONE CALL
Preconditions: conversation modality is phone call
Initiator obligations: report identity
Recipient obligations: answer phone
Recipient goals: GOAL:LEARN CALLER IDENTITY

• FRAME:STRANGERS IN PUBLIC
Preconditions: conversation is in public, initiator and recipient

are strangers
Initiator goals: GOAL:LEARN NAME OF STRANGER IN PUBLIC
Recipient goals: GOAL:LEARN NAME OF STRANGER IN PUBLIC

• FRAME:EXTREMELY INTROVERTED RECIPIENT
Preconditions: recipient is extremely introverted
Recipient goals: GOAL:END CONVERSATION

–7–



Note that because these frames can be stacked upon one another (i.e., each and every frame
whose preconditions are met will be activated in a conversation), we do not need to redu-
plicate specifications across them. For this reason, only the frame FRAME:FACE-TO-FACE
asserts an obligation on the initiator to greet the recipient, but of course this frame will
be activated whenever, e.g., the frame FRAME:STRANGERS IN PUBLIC is activated, since
conversations between strangers in public will always be face-to-face. Further, it is sim-
ple to specify frame variations that differ according to considerations of, e.g., character
personality—one simply asserts frame preconditions sensitive to these considerations and
then authors the frames to prescribe socially believable obligations and goals, given the,
e.g., personality considerations. This elegant stacking of frames allows an author to define
capsules of social context without having to worry about cumbersome notions like inheri-
tance. Because frame preconditions can specify anything about the world state, an author
can also specify frames that pertain to, for instance, past interactions or non-conversational
goals that characters may have:

• FRAME:ALREADY INTERACTED THIS TIMESTEP
Preconditions: conversants already interacted this timestep
Initiator obligations: explain reason for another conversation

• FRAME:INITIATOR SEEKS PROMOTION
Preconditions: initiator has a goal to be promoted at work,

recipient is initiator's boss
Initiator goals: GOAL:DISCUSS PROSPECT OF PROMOTION

The reader might wonder why the frame FRAME:FACE-TO-FACE does not assert an obliga-
tion on the recipient to perform a greet dialogue move. The reason for this is that upon
the initiator performing her obligated greet move (which the frame does prescribe), the
recipient will likely become obligated by that initiator line of dialogue to greet back in turn.
In this way, frame authoring here is not about scripting entire dialogue sequences, but rather
specifying an initial set of goals and obligations that may spark dialogue sequences that are
believable in their particular social contexts.

Conversational Violations
Lines of dialogue may have associated conditional conversational violations, which are
specified by rules of the form violation name ← conditions. If a line of dialogue
is deployed and the conditions for one of its violation rules hold, then that line will incur
a violation in addition to performing its associated dialogue moves. Such violations are
recognized by the other conversational party, who will have an opportunity (or an onus,
depending on the severity of the violation) to handle it, for instance by ignoring, acknowl-
edging, highlighting, belaboring it, etc. How a character handles a violation depends on
the particular line that incurred the violation, the character’s personality, and aspects of the
social state. On a technical level, we manage the handling of a given violation by having
the interlocutor seek to perform a dialogue move constituting such handling.

Topics of Conversation
As an ancillary notion, we reify topics of conversation, which a line of dialogue may be
used to address during a lull in a conversation. By ‘lull’, we mean conversation turns in

–8–



which no character is obligated to perform a dialogue move and no character is actively
pursuing a conversational goal. In such a case, a character might reference an existing topic
of conversation (e.g., work or the weather) to fill in the lull.

Propositions
We reify the semantic content of a line of dialogue as a set of propositions about the world.
(Here, we do not mean an expression of propositional logic, but rather the linguistic notion
of a ‘proposition’ as a meaning of an utterance.) As an example, the line My name is Jill
would have an associated proposition first name(speaker, 'Jill'). Note that we
only care about representing propositional content that corresponds to the belief facets that
make up character mental models in Talk of the Town, which means that we do not seek
to exhaustively reify all the conceivable propositions of a line. Below, we give a technical
account of how exactly propositions are used to transmit character knowledge.

Effects
Finally, a line of dialogue may have associated conditional effects that yield changes to the
general world state if the specified conditions hold; these are defined by rules of the form
effect← conditions. In our implementation, effect will be a method call that may be
executed to carry out the effect, e.g., interlocutor.lower_affinity(speaker).

Turn-Taking
Loosely following Traum and Allen (1994), conversation turns are allocated by the system
according to a simple policy: if a character has an unresolved obligation, allocate the turn
to him or her; otherwise, if a character has a conversational goal whose plan is not on hold,
allocate it to him or her. If there is a tie (e.g., both characters have an unobstructed plan and
no obligations) or there is a lull in the conversation, then the turn is allocated probabilisti-
cally with consideration to the conversants’ respective extroversion personality components.
Speakers will spend their turns accordingly (i.e., will seek to resolve obligations or pursue
goals), and speakers without obligations or goals will either address a topic of conversation,
perform the dialogue move make small talk, or adopt a goal to end the conversation.

Requesting Dialogic Content
So far, we have skirted issues of dialogue authoring and content selection; this is because we
wish to tease apart these concerns from a general description of the design of our dialogue
manager (in support of readers who may wish to port it to their own applications, which
will likely have different authoring and content constraints). Maintaining this stance, we
will in this section first provide an account of the basic constraints on dialogic content that
this system imposes, before briefly discussing the technical details of content selection and
deployment in our specific implementation of it.

While the dialogue manager decides what a character will say, an external content source
will decide how the character will say what they say. Specifically, once a conversation turn
has been allocated, the dialogue manager makes a request to its content source to ask for a
line of dialogue that either performs a targeted dialogue move (if the speaker will attempt to
resolve an obligation or pursue a goal) or addresses a targeted topic of conversation. Here,
the content source may be either a base of preauthored dialogue or an NLG module. In

–9–



either case, the content source must be able to reason over the following information about
all preauthored/generable lines of dialogue:

• Preconditions. A list of rules specifying what must be true (or not true) about the
gameworld in order for this line to be deployed.

• Dialogue moves. A list of the dialogue moves a line may be used to perform.
• Obligations pushed. A list of the dialogue moves this line obligates its interlocutor
to perform next.

• Speaker obligations pushed. A list of the dialogue moves this line obligates its
speaker to perform next.

• Conditional violations. A list of rules specifying the conditional conversational vi-
olations for this line.

• Topics introduced. A list of the topics of conversation introduced by this line.
• Topics addressed. A list of the topics of conversation addressed by this line.
• Propositions. A list of the propositions that will be asserted upon deploying this line.
• Lie conditions. A list of conditions that, if satisfied, mean that the speaker does not
herself believe the propositional content of a line of dialogue, which is how we define
lying in Talk of the Town (as explained above).

• Conditional effects. A list of rules specifying the conditional effects for this line.

Upon receiving a dialogue request, the content source must furnish a line (through either
content selection or generation) that satisfies the request (i.e., performs the targeted move
or addresses the targeted topic) and has its preconditions met. To evaluate preconditions,
the content source must have access to the current world state.

The Expressive Power of Preconditions
Because preconditions may specify anything about the world state, an author may use them
cleverly to prescribe that the content source furnish the most expressive variant of the lines
that perform the targeted dialogue move (or address the targeted topic of conversation),
given the character who is speaking and the context of the conversation and the gameworld
at the time of the request being made. Let us consider an example pertaining to the common
authoring strategy of having characters say the same thing differently according to varying
personality models; this strategy is at play in, e.g., Prom Week and Versu (McCoy et al.,
2013; Evans and Short, 2014). Specifically, we will consider three ways to perform the
dialogue move say you should get back to work that vary by character personality:

• Amiable: “Apologies, but I should probably get back to work before my boss catches
a look this way!”

• Neutral: “Well, I better get back to work now.”
• Cold: “You’re distracting me from my duties.”

By cleverly specifying the following preconditions, an author may prescribe that the content
source always pick the variant that best expresses the speaker’s personality:

• Amiable: speaker has personality trait 'amiable'

–10–



• Neutral: speaker does not have personality trait 'amiable', speaker
does not have personality trait 'cold'

• Cold: speaker has personality trait 'cold'

While dialogue preconditions are more intuitively a way of specifying when not to use a
given line, they may actually be used to flexibly prescribe which line, from a pool of can-
didates, is most expressive. As we have just shown, this is done by specifying disjoint
precondition sets such that the only satisficing line for a given speaker will (in the case of
this example) be the one that best expresses her personality. (More powerfully yet, authors
might employ a notion of precondition specificity, where lines with the most specific sat-
isfied preconditions are selected.) Beyond issues of character personality, preconditions
can be used in this same way to prescribe that a content source furnish dialogue that best
expresses any aspect of the conversation or the gameworld that holds at the time that the
dialogue request is made.

Our NLG Module
In authoring content for the conversation system we have implemented for Talk of the Town,
we utilize a tool that we have developed called Expressionist. With this tool, an author de-
fines a probabilistic context-free grammar whose terminal derivations are lines of dialogue
that are explicitly annotated for the specific concerns governing content selection in the tar-
get application (Ryan et al., 2015); in our case, these concerns are the types of information
about lines of dialogue that we enumerated above. Specifically, we have implemented an
NLG module that operates over a grammar authored in Expressionist to generate bespoke
lines of dialogue according to requests made by the dialogue manager. Due to space consid-
erations, further discussion of this NLG module is beyond the scope of this paper, though
we plan to present it in a future publication.

Updates
Once a line of dialogue has been furnished by a content source, the system deploys it, and
then the dialogue manager uses the information about it outlined above to execute updates
to the conversation state, the world state, and the subjective beliefs of the conversants; in
this section, we will discuss these notions in turn.

Updates to the Conversation State
To update the conversation state, the system first processes the dialogue moves performed
by the deployed line, which may resolve conversational obligations or cause plan steps in
conversational goals to be realized, which in turn may cause those goals to be satisfied. Ad-
ditionally, certain dialogue moves may terminate the conversation (e.g., storm off or say
goodbye back), cause new conversational obligations to be asserted, new conversational
violations to be incurred, or new topics of conversation to be introduced or addressed.

Updates to the World State
Updates to the general world state are made according to any conditional effects of a de-
ployed line that hold at the time of its delivery. In our implementation, we include arbitrary
function calls in the definition of effect rules, which are then executed to yield such effects.

–11–



Knowledge Transmission
Upon deployment, a line of dialogue transmits the knowledge asserted by its propositions,
which causes updates to the conversants’ beliefs to be executed accordingly; this is the
aspect of the conversation engine that hooks into the deep modeling of character knowledge,
outlined above, that underpins Talk of the Town (Ryan et al., 2015). Specifically, each time a
proposition is asserted by a line of dialogue, four types of evidence (defined above) may be
instantiated: a statement, declaration, lie, or eavesdropping. Whether a proposition causes
a statement or lie piece of evidence to be instantiated depends on the line of dialogue’s lie
conditions. Whether a line of dialogue is eavesdropped by a nearby character is determined
probabilistically at the start of a conversation turn. As new evidence is instantiated, the
recipients of the evidence consider whether to adopt new beliefs (or refine existing ones)
in the way described above (and more deeply by Ryan et al., 2015). Characters who adopt
new beliefs may then themselves assert propositions about the world that express these new
beliefs, thus propagating them. This may even occur over the course of a conversation, for
instance, in the case of a character learning her interlocutor’s name and then using that very
name in a later conversation turn (as seen in the example conversation below).

Symmetric Design
We note that our system design is symmetric with regard to its treatment of player and non-
player conversants, which is an unusual approach in dialogue systems (where task-based,
service-oriented paradigms reign) and in videogame dialogue engines (though Versu is a
strong counterexample). By our design, players and NPCs will all be held to the same
conversational standards (e.g., with regard to obligations or violations) and will all select
from the same content source. (Our system does not currently support player interaction,
but below we outline our vision for a player interface.) We like this approach for multiple
reasons. First, because it does not rely on a human to be in the loop, the system may be used
to produce procedural conversations among NPCs (an example of which we provide in the
next section); this could bolster background believability, and it could also be used to render
story beats that exclusively involve NPCs. Relatedly, because it does not require human
inputs, it is quite easy to test the system (by feeding it back on itself) and to refine and verify
content specifications. Lastly, by putting players and NPCs on the same conversational
playing field, the system will interestingly be able to recognize when players defy their
obligations or incur conversational violations; we believe this will afford a rich space of
NPC behaviors pertaining to the checking of specific disruptive player behaviors that in
many systems would not be recognizable.

EXAMPLE CONVERSATION
For illustrative purposes, in this section we will work through an example procedural con-
versation; for each of its lines, we provide a trace of how the line affects both the conver-
sational state and the gameworld. The lines that appear here were generated from a space
of roughly 3M generable lines. This particular conversation occurs on the night of August
14, 1979, at the bar of the Legnon Avenue Hotel, in a town called Piperton (pop. 322). It
is an exchange between strangers, initiated by Marion Orgel, a 64-year-old woman, toward
recipient Kevin Leppert, a 27-year-old man. For this conversation, the dialogue manager
activated the frames FACE-TO-FACE and STRANGERS IN PUBLIC, both defined above.

Marion Orgel: Hello.

–12–



— Turn allocated according to obligation('greet')
— Performed move('greet')
— Pushed obligation('greet back')

Kevin Leppert: Hi.
— Turn allocated according to obligation('greet back')
— Performed move('greet back')

Marion Orgel: Yours is a face I don’t recognize. Are you from Piperton?
— Turn allocated according to plan step(either, 'make small talk')
— Performed move('make small talk'), move('ask are you from here')
— Pushed obligation('answer are you from here')

Kevin Leppert: Yup, born and raised.
— Turn allocated according to obligation('answer are you from here')
— Performed move('make small talk'), move('answer are you from
here')

Marion Orgel: What do you do?
— Turn allocated according to plan step(either, 'make small talk')
— Performed move('make small talk'), move('ask where do you work')
— Introduced topic('work')
— Pushed obligation('answer where do you work')

Kevin Leppert: I’m a Stocker at 6th Street Grocers.
— Turn allocated according to obligation('answer where do you work')
— Performed move('make small talk'), move('answer where do you
work')
— Addressed topic('work')
— Asserted propositions workplace(Kevin Leppert, 6th Street Grocers), job
title(Kevin Leppert, 'stocker')
— Pushed obligation('acknowledge response')

Marion Orgel: Oh, okay.
— Turn allocated according to obligation('acknowledge response')
— Performed move('acknowledge response')

Marion Orgel: I’m Marion, by the way.
— Turn allocated according to plan step(Marion Orgel, 'introduce self')
— Performed move('introduce self')
— Satisfied goal(Kevin Leppert, 'LEARN NAME OF STRANGER IN PUBLIC')
— Asserted proposition first name(Marion Orgel, 'Marion')
— Pushed obligation('introduce self back')

Kevin Leppert: My name is Kevin.
— Turn allocated according to obligation('introduce self back')
— Performed move('introduce self back')
— Satisfied goal(Marion Orgel, 'LEARN NAME OF STRANGER IN PUBLIC')
— Asserted proposition first name(Kevin Leppert, 'Kevin')
— Pushed obligation('say nice to meet you')

Marion Orgel: Nice to meet you.
— Turn allocated according to obligation('say nice to meet you')
— Performed move('say nice to meet you')
— Pushed obligation('say nice to meet you back')

–13–



Kevin Leppert: And you as well.
— Turn allocated according to obligation('say nice to meet you back')
— Performed move('say nice to meet you back')

Kevin Leppert: I have to set off. Maybe I’ll see you around here again.
— Turn allocated probabilistically (due to lull in the conversation)
— Performed move('wrap up conversation')
— Pushed obligation('say goodbye')

Marion Orgel: Goodbye, Kevin.
— Turn allocated according to obligation('say goodbye')
— Performed move('say goodbye'), move('use interlocutor first name')
— Asserted proposition first name(Kevin Leppert, 'Kevin')
— Pushed obligation('say goodbye back')

Kevin Leppert: Bye.
— Turn allocated according to obligation('say goodbye back')
— Performed move('say goodbye back')
— Terminated conversation

EVALUATION
In evaluating a system like ours, there is potential to unintentionally end up evaluating the
quality of the authored content that it displays as its output, rather than the operation of the
system itself. With this in mind, here we seek to evaluate not the quality of the conversations
that our system produces (which would really be an appraisal of authoring performance), but
rather the naturalness of those conversations with regard to how they flow from line to line
(since this is what the dialogue manager controls). Toward this, we conducted a preliminary
experiment comparing randomly assembled conversations to ones produced by our system
(both using the same content base of lines generated by our NLG system). By using random
assembly as a baseline, we home in on the effect that our dialogue manager’s organizational
policies (e.g., turn-taking, conversational goals and obligations) have on conversational nat-
uralness. In this section, we discuss our experimental design and results.

Experiment
Seven respondents who are not associated with the project were administered a survey in
whichwe asked about the naturalness of sixty unrelated conversations. Specifically, for each
conversation, a single question was asked—How natural is the flow of this conversation?—
and participants indicated their judgement using an integer scale with values between 1
(“less natural”) and 5 (“more natural”). The sixty conversations were randomly sorted, with
each belonging to one of two types: thirty procedural conversations generated using all of
the dialogue manager’s organizational policies that we outlined above, and thirty random
conversations whose generation is explained below. Both types of conversations featured
randomly selected conversants in the same simulated town on the same simulation timestep.
To randomly generate conversations, a number of turns between five and fifteen (a typical
range for our procedural conversations) was randomly determined, and each turn was then
randomly allocated to one of the two conversants. During each turn, a dialogue move was
randomly selected and a request was made to our NLG system to target that move. Lines
whose preconditions were not met (given the world state at a particular conversation turn)
were not generated, as this could produce inherently nonsensical lines, as well as lines that

–14–



contradict a character’s personality model (which could produce a type of incoherence that
is unrelated to the kind that we sought to evaluate). As such, the random conversations
may more precisely be thought of as conversations that are yielded when only our dialogue
manager’s organizational policies are ablated.

Results
The human respondents rated the flow of procedural conversations as far more natural than
that of random conversations. Specifically, procedural conversations earned a mean natu-
ralness rating of 4.05 (σ = 0.97), versus 1.34 (σ = 0.82) for random conversations; this
difference was statistically significant (t(418) = 30.96; p < 0.0001). Though this is not an
evaluation of all aspects of our system (e.g., content selection, authorial expressivity, etc.),
the fact that procedural conversations earned ratings that far exceeded those of the random
baseline (and, further, were fairly high in absolute terms) indicates that the system’s orga-
nizational policies do well to engender natural conversational flow.

CONCLUSION AND FUTURE WORK
We have presented a fully procedural alternative to branching dialogue in the form of an
implemented dialogue manager that extends the Talk of the Town framework, in which non-
player characters (NPCs) develop and propagate subjective knowledge of the gameworld.
While previously the trading of character knowledge could only be expressed symbolically,
such exchanges may now be rendered in surface-level natural language. From a human-
evaluation task, we found that our system produces NPC conversations that flow far more
naturally than randomly assembled ones. It is our hope that interested readers will port our
system design to their own game engines.

Toward Dynamic Conversational Planning
While in our implementation characters currently rely on a preauthored plan library to pur-
sue their conversational goals, we plan to explore dynamic conversational planning in future
work. One approach to this would be to more richly specify plan components in a hierarchi-
cal task network (Erol, 1996). More dynamically still, characters could even chain backward
from goal dialogue moves by reasoning over conversational obligations to infer backward-
chaining rules. That is, characters would infer rules that chain from desired dialogue moves
backward to lines asserting obligations that would elicit performance of those desired moves
by the appropriate conversants.

Toward a Player Interface
We are currently tackling the tricky issue of providing a player interface to the larger con-
versation system that we are developing. (Lacking this, we have even been exploring the
unusual design space of using a human actor as an interface to Talk of the Town gameworlds;
Ryan et al., 2016.) Our goal for such an interface is to allow the player to select from lines
of dialogue (rendered in surface-level natural language) that come from the same content
pool that NPCs select from. Because such lines would be explicitly annotated for all the
concerns that our dialogue manager reasons about, the system would deeply understand the
player’s dialogue choices (via the symbolic mark-up), even though she may make her se-
lections by considering nuances of natural language (which the system cannot understand).
The problem, however, is that we must build an interface by which a player may select from

–15–



millions of dialogue choices. From preliminary exploration, we anticipate that our solution
will combine: system suggestions that rely on the current conversational context, a hierar-
chical menu by which the player may navigate dialogue moves and select example lines that
perform those moves, and a free-text interface that uses a machine-learning model to map
unconstrained player inputs to lines in the content pool.

BIBLIOGRAPHY
Austin, J. L. (1975). How to do things with words. Oxford University Press.
Bateman, C. M. and E. Adams (2007). Game writing: Narrative skills for videogames.
Charles River Media.

Brown, P. and S. C. Levinson (1987). Politeness: Some universals in language usage.
Cambridge University Press.

Erol, K. (1996). Hierarchical task network planning.
Evans, R. and E. Short (2014). Versu—a simulationist storytelling system. TCIAIG.
Freed, A. (2014). Branching conversation systems and the working writer. Gamasutra.
Grice, H. P. (1970). Logic and conversation.
Joseph, E. (2012). Bot colony—a video game featuring intelligent language-based interac-
tion with the characters. In Proc. GAMNLP.

Lessard, J. (2016). Designing natural-language game conversations. In Joint Conference of
DiGRA-FDG.

Mateas, M. (2005). Beyond story graphs: Story management in game worlds. In Story
Generators: Approaches for the Generation of Literary Artefacts.

Mateas, M. and A. Stern (2004). Natural language understanding in Façade: Surface-text
processing. In Proc. TIDSE.

McCoy, J., M. Treanor, B. Samuel, A. A. Reed, M. Mateas, and N. Wardrip-Fruin (2013).
Prom week: Designing past the game/story dilemma. In Proc. FDG.

Minsky, M. (1977). Frame-system theory. Thinking: Readings in Cognitive Science.
Reed, A. (2010). Creating Interactive Fiction with Inform 7. Cengage Learning.
Ryan, J. O., C. Barackman, N. Kontje, T. Owen-Milner, M. A. Walker, M. Mateas, and
N. Wardrip-Fruin (2014). Combinatorial dialogue authoring. In Interactive Storytelling.

Ryan, J. O., A.M. Fisher, T. Owen-Milner, M.Mateas, andN.Wardrip-Fruin (2015). Toward
natural language generation by humans. In Proc. Intelligent Narrative Technologies.

Ryan, J. O., M.Mateas, andN.Wardrip-Fruin (2015). Open design challenges for interactive
emergent narrative. In Interactive Storytelling.

Ryan, J. O., A. Summerville, M. Mateas, and N. Wardrip-Fruin (2015). Toward characters
who observe, tell, misremember, and lie. In Proc. Experimental AI in Games.

Ryan, J. O., A. J. Summerville, and B. Samuel (2016). Bad News: A game of death and
communication. In Proc. CHI Conference on Human Factors in Computing Systems.

Short, E. and R. Evans (2013). Versu: Conversation implementation.
https://emshort.wordpress.com/2013/02/26/versu-conversation-implementation/.

Szilas, N. and I. Ilea (2014). Objective metrics for interactive narrative. In Proc. ICIDS.
Traum, D. R. and J. F. Allen (1994). Discourse obligations in dialogue processing. In Proc.
Association for Computational Linguistics.

Traum, D. R. and S. Larsson (2003). The information state approach to dialogue manage-
ment. In Current and New Directions in Discourse and Dialogue.

Wardrip-Fruin, N. (2009). Expressive Processing. MIT Press.

–16–


