
Design Lessons From Binary Fission:
A Crowd Sourced Game for Precondition

Discovery

Kate Compton, Heather Logas, Joseph C. Osborn, Chandranil
Chakrabortti, Kelsey Coffman, Daniel Fava, Dylan
Lederle-Ensign, Zhongpeng Lin, Jo Mazeika, Afshin

Mobramaein, Johnathan Pagnutti, Husacar Sanchez, Jim
Whitehead, Brenda Laurel
University of California, Santa Cruz

1156 High Street
Santa Cruz, California

(831) 459-0111
kcompton@soe.ucsc.edu, hlogas@soe.ucsc.edu, jcosborn@soe.ucsc.edu,

cchakrab@ucsc.edu, kercoffm@ucsc.edu, dfava@soe.ucsc.edu,
dlederle@soe.ucsc.edu, linzhp@soe.ucsc.edu, jmazeika@ucsc.edu,

mobramaein@soe.ucsc.edu, jpagnutt@ucsc.edu, hsanchez@soe.ucsc.edu,
ejw@soe.ucsc.edu, blaurel@soe.ucsc.edu

John Murray
SRI International

333 Ravenswood Avenue
Menlo Park, Californa

(650) 859-5186
jxm@sri.com

Proceedings of 1st International Joint Conference of DiGRA and FDG

©2016 Authors. Personal and educational classroom use of this paper is allowed, commercial use requires
specific permission from the author.

ABSTRACT
This paper introduces the formal software verification game, Binary Fission. After outlining
the problem space of formal software verification games, we give a brief overview of Binary
Fission. We then go into detail about several important design goals we had in mind, such
as affording rapid decision making, based on other software verification games and our own
past experience. We detail how Binary Fission achieves these design goals, and then talk
about several design lessons we learned. We discuss lessons learned, both in the parts of
the game that performed well, and in the parts that did not quite work as intended.

KEYWORDS
games with a purpose, game design, formal verification

INTRODUCTION
Formal software verification is the task of proving that a software system has particular
properties. Some examples of provable properties are that the software will never enter an



unsafe state, or that the software is immune to a malicious attack. The general approach in
software verification is to create a mathematical model of the software, then reason over the
model with the aid of automated tools. If the model is accurate, than the statements provided
by the reasoning tools are true of the software. Currently, creating these mathematical mod-
els is time consuming and requires a high degree of training in mathematics and computer
science. The demand for formal software verification, therefore, easily out strips the ability
of a small collection of specialists to verify code.

Several efforts to crowd source the formal verification problem have begun. This paper
describes the design of such a crowd-sourcing effort, the puzzle game Binary Fission. We
focus on key game design goals that we believe are important for crowd sourced formal
verification games, such as state representation and affording rapid decision making. We
also discuses the reception of Binary Fission and some design lessons we learned in creating
the game, from real-time player chat to reward systems.

RELATED WORK

The design for Binary Fission comes from several different sources that were all intertwined
into the final game. First and foremost, the game was designed as a citizen science game.
It was one of the Phase 2 games from the CSFV (Crowd Sourced Formal Verification)
program (Dean et al. 2015). Therefore, the game’s primary end goal was to produce good
formal verification results. With this in mind, we looked at the designs and results from
the previous CSFV games, including Flow Jam (Dietl et al. 2012), Ghost Map (Watro et al.
2014)(Moffitt et al. n.d.) and Xylem (Logas et al. 2014). These games provided obvious
examples of existing designs to serve as templates for Binary Fission.

Additionally, we drew inspiration from other citizen science games and other games with a
purpose (or GwaPs). One classic example of these games is FoldIt, developed by the Uni-
versity ofWashington (Khatib et al. 2011). This game crowd sourced the problem of protein
folding, and its design presented a novel set of challenges (Cooper et al. 2010). FoldIt, and
other games like it, have been highly praised for their successes in solving computationally
intractable problems. However, as Tuite discusses, there are several very easy traps that a
designer can fall into while designing a GwaP (Tuite 2014).

Some of these design traps are: unresponsive or slow feedback to the player, game mechan-
ics that do not assist or even impede the science goals of the game, treating players as human
processing units, and being opaque about the science goal of the game.

There has been a recent push towards using crowdsourcing as a tool for helping the field
of software engineering as a whole. In a survey by Mao et al., the authors describe a wide
variety of methods, platforms and goals that approaches in this domain as a whole (Mao et al.
2015). While not all of the techniques described are games, the use of GwaPs for software
engineering work definitely falls under this umbrella. Tools designed to make verification
easier (Schiller and Ernst 2012)(Akiki et al. 2013) have lowered some barriers to entry for
real world use of software verification, and provide examples of possible human-friendly
ways to present formal verification problems to users. Additionally, there have been other
systems (Li et al. 2012) outside of the CSFV program that have attempted to use games as
a tool for assisting verification.

–2–



Our biggest influence comes from Xylem itself, as not only is Binary Fission focused on
discovering similar results, but many of the developers worked on both projects. While
Xylem’s designers chose to put the mathematics behind the game on display (Logas et al.
2015), Binary Fission presents the players with a more abstracted view of its puzzles, draw-
ing inspiration from games like Puzzle Pirates and marble maze toys for its design.

BINARY FISSION

In Binary Fission, players are presented with a set of blue and orange quarks which are
originally mixed together inside the nucleus of an atom. The goal of the player is to isolate
the quarks into as pure sets as possible. The players are given a set of filters which are
capable of splitting the atom’s nucleus (and the quarks contained in it) into two sections.
Different filters create different splits, and it is the player’s job is to decide which filters to
apply, and in what order.

By recursively applying filters, players build a binary decision tree. The game starts with a
root node representing the original nucleus (where all quarks are mixed together). Applying
the first filter causes the root node to be split into two child nodes, each containing a certain
chunk of the original quarks. Players continue to apply filters until nodes contain only blue
or only orange quarks, or until a depth limit is reached.

Players earn points based on how effectively they can isolate the quarks from the mixture
in the original nucleus. Each level has a point goal which players can achieve in order to go
to the next level. Alternatively, players can click on a skip button to automatically go to the
next level. Players start as recruits and get promoted as they accumulate more points over
their lifetime in the game. The game has also a chat window which the players can use to
interact with each other, as shown in figure 1.

The quarks and filters are more than a set of gameplay elements with interesting properties.
Quarks represent the values of variables at a given point in the program. Blue quarks come
from sets of variable values that come from normally terminating executions. Orange quarks
come from sets of variable values that lead to a crash or assertion violation.

Filters, then, are logical predicates which are either satisfied or falsified by the quarks. For
instance, a quark from a program that only featured two integer variables could be repre-
sented by a pair < x, y > such as <3, 4> or < 10, 0 >. A filter designed to work with these
quarks could represent statements such as x < y, x17 or y + x = 0.

By playing Binary Fission, players are building a decision tree that separates good and bad
program states. Once a player produces a classification tree, it is easy to read out logical
expressions that characterize good states and bad states, and those expressions constitute
likely program invariants. However, in Binary Fission, the classification trees are typically
partial; some leaf nodes only contain good states, some only contain bad states, while others
contain a mixture. Therefore, the conjunction of predicates that link the root to a pure blue
node describes a set of states that satisfy program assertions, and express a likely invari-
ant. A single player solution can contain several such paths. By extension, the disjunction
of paths to pure blue (good) nodes across all player solutions forms the consensus, likely
invariant. This results in an expression of the form:

–3–



Figure 1: The general game play screen. Players create
decision trees that sort the quarks into a blue pile and an
orange pile

ConjuctionOfPureGoodPredicates1 ∨ ... ∨ ConjuctionOfPureGoodPredicatesn

Because these expressions are induced from data, they are only likely, or candidate, invari-
ants. Determining whether an expression is an actual program invariant requires logical
proof. Candidate invariants produced by Binary Fission are tested by passing them through
the CBMC model checker: an automated tool that calculates the logical effect of each pro-
gram statement on the candidate invariant, and determines if the end result implies that the
desired postconditions are true.

SOFTWARE VERIFICATION TASK
A key problem in software verification is to find program abstractions that are sufficiently
precise enough to enable the proof of a desired property. However, these abstractions need to
be sufficiently general enough to allow an automated tool to reason about the program. Au-
tomated techniques find such abstractions by identifying suitable program invariants—i.e.,
mathematical statements about the program that are true regardless of input. Unfortunately,
the space of possible abstractions is essentially infinite and it is not currently possible to find
useful predicates via automated methods. The human process for finding invariants relies
on highly skilled people, schooled in formal methods, to reason from the purpose of pro-
grams towards possible predicates. However, this approach has an issue of scale: millions
of programs could benefit from formal verification, while there are only a few thousand
such experts worldwide. Automated methods rely on search and expectations to constrain
the predicate invention process. White box techniques leverage knowledge about program
content to propose candidate invariants, while black box methods search a space of tem-
plates (often boolean functions of linear inequalities) using comparatively little knowledge
of program structure.

–4–



Recent work on classification techniques employ data to constrain predicate invention. Here,
the objective is to induce a boolean expression over a base set of predicates that admits
“good” program states (inputs that satisfy desired properties encoded as assertions) while
excluding all “bad” states (input that violates such assertions on execution). These tech-
niques output likely invariants that can be tested by static or dynamic analysis methods to
determine if they are invariant conditions of the underlying program. The key issue in this
approach is generalization; useful invariants are broad statements, while classificationmeth-
ods tend to overfit the data. Moreover, the data on good and bad program states required to
achieve robust generalization is in short supply, as program sampling is itself a hard task.

Binary Fission addresses the subtask of precondition mining; it assumes a set of annotations
that encode the desired program properties, and seeks predicates that imply the annotations
hold under program execution. Players function as classification engines by collectively
composing likely invariants without any awareness that they are performing program veri-
fication.

DESIGN GOALS
State Representation
One of the challenges with formal verification is the sheer size of software. Programs have
many variables, often encompassing several data types. In addition, we want to find pred-
icates for both individual and combinations of variables. Therefore, we want to be able to
work with and reason over very large collections of variable-to-value mappings. For Binary
Fission in particular, we also want to be able to represent valid and invalid variable-to-value
mappings.

Not only are there a lot of variables that we want to reason about in as many combinations
as possible, but each variable has a large range on its potential data type. We need some
representation that allows for reasoning about strings and for the same reasoning to apply to
dictionaries, floating point numbers, or structured data. Presenting this sort of information
in terms of mathematical equations or operations is very verbose—players might be looking
at pages of equations for a single problem.

Binary Fission attacks this problem with the quark and filter abstractions. Quarks are a very
compact representation of data; we ‘abstract away’ all of the information a player does not
need to sort the quark with a filter. Quarks are just a bit of data (that the player does not see)
labeled as ‘good’ or ‘bad’. This lets us represent all kinds of data types without their being
any real mechanical or visual changes in the problem, as the data itself is unimportant—it
is the labeling that players see. We can also represent many examples of ‘good’ and ‘bad’
for a single variable.

Filters are another point of abstraction. We only let players see how the collections of quarks
split after applying a filter, rather than the actual property that the filter encodes. This, again,
lets us represent a lot of different potential filters (as long as the hidden data in the quark
matches the hidden property in the filter) for any problem in a visually compact way.

Rapid Decision Making in Large Decision Spaces
In addition to the challenges of representing a program state in a homogeneous way, we also
want the representation to afford rapid decision making. Function predicates are equations

–5–



Figure 2: The Iris view of Binary Fission. In the center,
players see how the current filter sorts the quarks. Spread
around this visualization are the various filters, highlighted
based on how well they sort the current set of quarks based
on the current highlighting heuristic

over variables and program states, but interpreting and understanding these equations is a
difficult task, even for specialists. To compound this problem, we want to be able to reason
about many potential predicates. So, if understanding one predicate is a complex cogni-
tive task, understanding a group of predicates may be, if not insurmountable, off-putting
to a large portion of potential players. Partially, this is due to the difficulty of the task, but
another contributing factor is math anxiety in our potential player base (Lee 2009). For a for-
mal software verification game, we need some sort of abstraction that allows for reasoning
about predicates that is easier to interpret than a raw mathematical equation.

Our solution to this was the Iris View, shown in figure 2. In this view, players can mouse
over a potential filter and see how it will separate the quarks. Players are able to scan
multiple filters with one mouse gesture. This rapid feedback loop helps players make a
choice that separates the quarks the way they want quickly. In addition, we provide three
highlighting strategies for filters: we can highlight the filters that separate the quarks such
that there is a large group of only one color (purity), we can highlight the filters that separate
the quarks such that they have roughly the same amount in each new cluster (balance), and
we can highlight the filters that separate the quarks to maximize player score (utility).

Rapid Construction of Predicates
For some game mechanics, it is important to give players feedback as quickly as possible
(e.g. movement in a endless runner game). Although this fast feedback paradigm is not
always imperative of puzzle games (a genre in which both Binary Fission and Xylem are
members), rapid user feedback on puzzle progress can often help players feel engaged and
more comfortable in trying out novel new ideas or concepts (Compton and Mateas 2015).

–6–



For formal software verification, establishing preconditions over predicates is a task we
want users to be able to complete very quickly, in order for them to feel safe in trying out
novel new ideas and concepts to construct novel preconditions. There is also a component
of sheer usefulness—a player that can come up with twice as many decision trees for some
particular timestep is roughly twice as valuable to the primary end goal as a player who
came up with less predicates, assuming the trees are of similar usefulness.

Binary Fission affords rapid problem progress in two ways. First, the mechanics for solving
problems themselves are simple. The game focuses on point and click mechanics, rather
than slower drag and drop mechanics. Second, the game makes it very easy to drop into
a puzzle and move on to the next one. The tutorial is streamlined, and the player is never
further than one screen away from a puzzle at any time.

Both design choices in the Iris View and screen navigation link back to the formal verifica-
tion task. Players in Binary Fission are exploring a large space, and we want to encourage
players to look in corners that automated methods ignore. Having players being able to
rapidly experiment with new solutions helps fulfill this goal.

Citizen Science Audience
Some of Binary Fission’s design goals were inspired, in part, by past work performed on
Xylem. One of the big evolutions was a shift in intended audience. The intended audience
for Xylem was a general gaming “niche-casual” (Logas et al. 2014) audience. For Binary
Fission, we targeted a new citizen science audience.

This new citizen science target audience came with a different set of game design consid-
erations. Citizen scientists (roughly defined as users of web services such as Zooniverse 1)
are primarily interested in the science goals behind a GwaP, rather than a strong narrative
framing or extensive world building. This casts citizen scientists as similar players to gen-
eral puzzle game players (who often care more about puzzle mechanics than explanations
as to why they are solving puzzles or other narrative framing), and as such, we designed
Binary Fission with these sorts of players in mind.

However, we did not want to intimidate users by exposing all of the underlying mathematics
that Binary Fission uses to create its puzzles—a lesson that was learned from Xylem. As
stated earlier, the expressive quark abstraction completely masks all of the underlying data
(what the quarks and filters actually represent under the hood), presenting the player with
nothing more than a simple sorting puzzle.

In addition, we wanted to try and leverage the crowd by building a community around Bi-
nary Fission. Communities around games can be useful for developing a consistent user
base, bootstrapping new players to work on relevant problems and providing assistance to
each other on difficult problems. Several proposed systems for community involvement
were discussed and designed, such as sharing problems and compound predicates across
players for real time collaboration. We also considered motivating players through team
competitions. However, due to time constraints on the project, we ended up implementing
a simple, realtime chat feature.

1. http://www.zooniverse.com

–7–



Figure 3: The score widget of Binary Fission. The bar
on the right fills up as a player’s score increases. The teal
Goal marker shows on the bar a baseline number of points
a player must achieve to ’score’ the problem. The orange
Best marker on the bar shows what the current overall high
score for that problem is. The Next button is not shown
until the player’s current score is greater than or equal to
the goal score

Reward Systems

It is common for puzzle games to reward players in points, and then encourage more play
by beating a high score for a particular puzzle, or accumulating the most points total in the
game currently (e.g, leaderboards). Points also serve as a handy progress marker for the
player, so they can see how close they are to finding a solution. However, a consistent
design difficulty with formal verification games is that progress on a problem is hard to
chart. Tied to the ‘charting forward progress problem’ is a difficulty in gauging how hard
a problem is. Common sense metrics, like ‘problems that require more steps to solve are
harder’ no longer fit, as it is difficult to figure out what a forward step looks like. This makes
assigning how many points a problem is worth is also hard. The point assignment difficulty
makes presenting the player with a difficulty curve that makes sense (i.e. players should
start with easier problems and progress to harder ones) a challenge.

Our solution to this three-pronged (hard to define forward progress, hard to define a metric
for problem difficulty, and hard to define a difficulty curve) problem was heavily inspired
by the game Phylo (Kawrykow et al. 2012). The way scores are presented to the player is
shown in figure 3. Players do not need to completely sort each problem tomake ameaningful
contribution. As such, a minimum useful score is set—10% of the theoretical total possible
points for the problem. When players exceed this threshold on the puzzle, they may move
on to the next puzzle. We also present the best score received so far on a particular puzzle,
so that players can try to be the current best solver, and friendly competition can help inspire
better and better solutions.

–8–



N ×

∑

i∈leaf nodes

(

purityA
i × sizeB

i

)

(1)

Scoring in Binary Fission is based around two primary metrics: purity and size (1). Here,
purity is the maximum of the percentage of good states and the percentage of bad states in a
node, size is the total number of quarks contained within a node. This calculation provides
the game’s core tension between fewer broad-strokes filters (which typically maximize the
size of the nodes at the expense of the purity) and more precise filters that only remove a
small number of quarks (which create very pure, but very small, nodes).

The exponents A and B are arbitrary constants (set to 1.9 and 1.4, respectively), and N is a
value that increases with the overall count of pure nodes, but decreases with the maximum
depth of the tree. To get the theoretical maximum score for a problem, we assume the
existence of a filter that will completely sort the quarks, and calculate the score from that
theoretical filter.

Binary Fission imposes a 5-level depth limit on player generated classification trees, which
bounds the complexity of the resulting classifiers. The depth limit and scoring mechanics
influence players to produce as many pure nodes as early as possible. This guides players
towards producing useful and general classification trees. Each classification tree produced
through Binary Fission is typically partial: some leaf nodes only contain good states, some
only contain bad states, while others contain a mixture. In addition, the solutions are id-
iosyncratic, as the players generally employ different subsets of filters during game play.

Finding Strong Invariants

The space of potential program invariants is vast. This is one of the reasons we want to
crowd source invariant finding—we hope that people will look at interesting places in the
invariant space that automated methods miss. However, people in general will not, by de-
fault, shift towards interesting or useful parts of the solution space. Binary Fission tries
to lead people towards useful parts of the space by trying to consider invariants that sit on
the boundary between true program behavior and impossible program behavior. Program
invariants can be thought of as tight over-approximations of actual program behavior. A
particular invariant may permit more properties than are actually true during program exe-
cution, so we want to find invariants that approximate actual program behavior as much as
possible.

Trying to facilitate consideration in this space, we generate the bad quarks by mutating the
code slightly and then generating data that fits the mutated code. Because the bad quarks
are highly similar to the good quarks, players compose invariants that are tightly related to
actual code behavior.

Aesthetic Goals

The visual design for Binary Fission was chosen to invoke a “sciencey” feel, specifically
by invoking a design motif that is reminiscent of modern cyberpunk visuals, and merging
them with a feeling of organic life. All of Binary Fission’s visual elements work with this

–9–



concept, from the light-on-dark color scheme to the use of curves and smooth growth when
opening the Iris view. We chose this aesthetic to help demonstrate that the game has a
simple visual metaphor for computer science, which relates to the actual scientific task. In
addition, such an aesthetic design does not require any complex narrative framing or world
building, as players can already visualize doing a computer science task with a system that
invokes popular computer science symbology.

This aesthetic is also minimal and clean. Although some puzzle games have thrived with an
emphasis on difficult to interpret user interfaces and complicated user interaction patterns,
our desire to tap into a citizen science audience and focus on the formal verification task
pushed us towards a simple, clean visual aesthetic.

In addition to the aesthetic itself, we focused our efforts on finding mechanics for play
that were as simplistic as possible while still allowing the depth of experience that the game
needed. To this end, the Iris View featured quarks scattering into their two piles as the player
dragged their cursor over the various filters available to them in each problem. Selecting a
filter was done with a simple mouse click, and opening the iris view only required a single
click as well.

RECEPTION

At time of writing, Binary Fission was played by 972 players, who came up with 2963 so-
lutions. It is interesting to note that 655 solutions (22%) came from 160 players (16.5%)
playing on July 21st, which coincided with the publication of a BBC article on Binary Fis-
sion and the CHEKOFV project as a whole2. We use Binary Fission to analyze the imple-
mentation of a Traffic Collision Avoidance System (TCAS). Such systems alert pilots to the
threats of a mid-air collision posed by nearby aircraft, and suggest avoidance maneuvers. It
is critical for these systems to satisfy safety properties which can be represented as postcon-
ditions embedded into the code. We tackle a subtask of the verification process, which is, to
find suitable function preconditions. Function preconditions are statements about program
state that, if they hold on entry to the function, they then ensure that the postconditions are
not violated.

The version of TCAS used in our evaluation has become a common subject to verification
methods and test case generation systems since being incorporated into the Software-artifact
Infrastructure Repository (Rothermel et al. 2006).

We created game levels based on seven out of the nine functions in TCAS. Logical predicates
were generated though game play and, in the background, we analyzed these predicates on
two main counts: whether they can be used as function preconditions, and if so, whether
these preconditions are useful to the formal verification process.

Our analysis shows that players discovered several function preconditions that precluded
the safety postconditions in TCAS from being violated. Figure 4 shows three preconditions
found with Binary Fission. There were 3,108 clauses created by players from game play
across all levels, 191 of them qualified as program preconditions.

2. See http://www.bbc.com/news/business-33519194 for the article

–10–



(not(Other_Tracked_Alt > Own_Tracked_Alt))
and (Up_Separation < Positive_RA_Alt_Thresh[Alt_Layer_Value])

(Other_Tracked_Alt > Positive_RA_Alt_Thresh[Other_Capability])
and (Down_Separation >= Up_Separation)
and (not(Up_Separation <= Positive_RA_Alt_Thresh[Alt_Layer_Value]))
and (Other_Tracked_Alt > Own_Tracked_Alt)

(not(Other_Capability == 2))
and (not((Down_Separation == 800) or (Down_Separation == 600)

or (Down_Separation == 500)))
and (Down_Separation != Positive_RA_Alt_Thresh[Alt_Layer_Value])
and (not(Other_Tracked_Alt > Own_Tracked_Alt))
and (Up_Separation < Positive_RA_Alt_Thresh[Alt_Layer_Value])

Figure 4: Example crowd sourced preconditions found
through Binary Fission game play.

As opposed to long, complicated logical predicates, the preconditions that Binary Fission
players discovered were human readable; we believe that players had a big role in curbing
the complexity of these predicates.

Because players are encouraged to build shallow trees and are forced to work within a max-
imum depth limit, they are also encouraged to create large pure splits, therefore needing less
predicates to filter more of the good program states.

We assess the generality of the crowd sourced preconditions by measuring their coverage
against test data that was not used in game level constructions (this is data not seen by
players). The more of the “good” program state data explained by the found program pre-
conditions, the more general are the logical statements and the more utility they offer. The
best-case scenario is for the precondition to accept all good states.

For the seven functions in TCAS, we computed the percentage of “good” states in the test
set that were accepted by the logical disjunction of the preconditions found by players. As
shown in table 1, the results are promising. Binary Fission players were able to find function
preconditions with noteworthy levels of generality, yet there is room for improvement.

LESSONS LEARNED
Chat
Unfortunately, players did not use the real time chat system very much in Binary Fission,
and as a consequence, the game did not build much of a community around it. Looking at
how chat was used, we realized that players would often send a message out in chat, but not
see a reply. After this happened once, players were highly unlikely to use the chat feature
again.

This is mostly a consequence of a sparse player base for Binary Fission. We still believe that
community building through in-game communication can occur in sparse player environ-
ments. However, the system should be closer to a messaging service (where an immediate

–11–



% accepted
Function good states
ALIM 53.7%
alt_sep_test 21.2%
Inhibit_Biased_Climb 20.0%
Non_Crossing_Biased_Climb 20.3%
Non_Crossing_Biased_Descend 36.6%
Own_Above_Threat 0
Own_Below_Threat 0

Table 1: Testing the player-found preconditions’ general-
ity by comparing the number of good states accepted ver-
sus the total number of good states in the test set.

response isn’t expected) than a chat channel. Another useful feature would have been to set
up alerts, so that a developer could see when someone sent a message to chat, and respond
accordingly. We also believe that our originally planned community building features (such
as problem sharing) would have helped community building and social engagement.

Abstraction of formal verification

One of the strengths of Binary Fission is how well it abstracts away the messy details of
formal software verification and presents it as a simple sorting problem. This allows for
Binary Fission to represent a wide range of data types and predicates, and get input data from
a wide variety of programs. This also keeps Binary Fission accessible to a wide audience.

However, this abstraction also turned players off to playing the game. A subset of players
wanted to know more about the mathematical underpinnings behind the quarks, filters and
sorting, and felt frustrated by the lack of information they could get about any particular
problem. Finding the correct balance between expressibility and flexibility is a core problem
in crowd sourced formal verification games. In addition, it becamemore difficult to leverage
the innate human skill of spacial intuition at such a high level of abstraction.

Reward systems

While Binary Fission had a leveling system for the player (over time, a player earns points
and achieves new ranks within the game) it fails to provide several other important utilities
for player retention. First, while the overall top score for each level is shown the player, the
player has no indication of what their personal top score is, much less whether or not they
have attempted to solve a given puzzle before at all. Without this in place, playing puzzles
can feel like an exercise in shouting into the void—a player can solve a puzzle as much
as they want, but unless they are tracking their scores separately on their own, there is no
meaningful indication of progress until they manage to create a solution that scores higher
than the current top score.

This use of personal best could also inform the scoring function, as well as the decision
trees that particular player generates. If the player is seeing a problem again, we may only
let them submit solutions that score better than their original contributions. If the player’s

–12–



current best is visualized out via Binary Fission’s score widget (the current version is shown
in figure 3), we can motivate players to “close the gap” between their best scores and the
current high score, as well as concretely showing them howmuch better their current score is
compared to our baseline. This mix of competition and positive reinforcement may improve
player retention.

FUTURE WORK
The main goal of our work on Binary Fission was to introduce crowd-sourcing as a promis-
ing approach to invariant discovery. From this perspective, the entire game is an exploration
of a simple conjecture, i.e., that many non-expert individuals have the desire and ability to
provide insight into verification tasks when they are presented in a suitable form. This con-
jecture appears to holds for Binary Fission. If it generalizes, related games will provide
leverage on additional verification tasks, and crowd sourcing will offer an avenue for ex-
panding the reach of verification technology.

The work on Binary Fission can be continued down three major paths going forward. The
first, andmost obvious, would be a direct application of the lessons learned to a new iteration
of Binary Fission. This could take the form of adding in things such as a non-realtime chat
feature or alerts and personal score tracking. Another unmentioned, but important part to
improve would be the classification tree. We could allow it to use the pure bad nodes in
addition to pure good nodes to improve the formal invariant check. One could also imagine
a visualization scheme such that a future formal software verification game could take more
advantage of human spacial intuition and showmore of the mechanical underpinnings of the
problem without resorting to long equations, program snippets or other forms of software
representation that are hard to reason over.

The second major thrust would be to be an industrial strength version of this game, designed
to work over actual code input by the users. This system would use a suite of automated
techniques to provide predicates, good and bad program states. Additionally, it would allow
for the crowd sourced candidate invariants to be tested as invariants for a client’s source
code. This would require a significant amount of effort to just extend Binary Fission’s
current system to the limits of modern automated techniques. However, even then, there
would still be a large set of problems that the system would be unable to address.

The third strategy would be to create a suite of games that allow for the players to work
on several different avenues for addressing the problem of invariant search. For instance,
in one game players could define various primitive statements that could be imported into
Binary Fission and composed into more complex statements. From there, other games could
be implemented to test the strength of the outputs of Binary Fission, and this data could be
used to inform the problems from the first game, thus creating a closed loop that gradually
increases the strength of the various invariants over time.

The design for Binary Fission is built around a solid core, and any of these improvements
could see great future results.

CONCLUSION
The design of Binary Fission presented several challenges. The reasoning space that needed
to be represented was vast, but players still needed to be able to move rapidly about it in

–13–



order to solve puzzles. We needed to design a reward system that managed to allow for
incremental progress on a problem in a highly complex domain. Evenwith these constraints,
we wanted player solutions to be useful for the task of formal software verification and
aspired to keep mechanics simple and accessible, while fitting a cyberpunk aesthetic.

Several of our features ended up not working as well as we would have liked—we found
the use of a real-time chat service did not foster the sense of community we had hoped, due
to the sparsity of our player base. Although our software abstraction was powerful, several
players wished for deeper view as to what was going on behind the hood. Although our
scoring mechanic did manage to reward incremental progress, it failed to retain players due
to a lack of context provided.

However, overall, Binary Fission did lead to promising results on the core task of formal
software verification, with the crowd managing to find novel, legible and useful program
invariants.

ACKNOWLEDGEMENTS

This material is based upon work supported by the United States Air Force Research Lab-
oratory (AFRL) and the Defense Advanced Research Projects Agency under Contract No.
FA8750-12-C-0225. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of AFRL
or DARPA.

BIBLIOGRAPHY

Akiki, Pierre, Arosha Bandara, and Yijun Yu. 2013. “Crowdsourcing user interface adapta-
tions for minimizing the bloat in enterprise applications.” In Proceedings of the 5th
ACM SIGCHI symposium on Engineering interactive computing systems, 121–126.
ACM.

Compton, Kate, and Michael Mateas. 2015. “Casual Creators.” In Proceedings of the Sixth
International Conference on Computational Creativity, edited by Hannu Toivonen, Si-
mon Colton, Michael Cook, and Dan Ventura, 228–235. Provo, Utah: Brigham Young
University, June.

Cooper, Seth, Adrien Treuille, Janos Barbero, Andrew Leaver-Fay, Kathleen Tuite, Firas
Khatib, Alex Cho Snyder, Michael Beenen, David Salesin, David Baker, et al. 2010.
“The challenge of designing scientific discovery games.” In Proceedings of the Fifth
international Conference on the Foundations of Digital Games, 40–47. ACM.

Dean, Drew, Sean Gaurino, Leonard Eusebi, AndrewKeplinger, Tim Pavlik, RonaldWatro,
Aaron Cammarata, et al. 2015. “Lessons Learned in Game Development for Crowd-
sourced Software Formal Verification.” In 2015 USENIX Summit on Gaming, Games,
and Gamification in Security Education (3GSE 15). Washington, D.C.: USENIX As-
sociation, August. https://www.usenix.org/conference/3gse15/summit-
program/presentation/dean.

–14–



Dietl, Werner, Stephanie Dietzel, Michael D Ernst, Nathaniel Mote, Brian Walker, Seth
Cooper, Timothy Pavlik, and Zoran Popović. 2012. “Verification games: Making veri-
fication fun.” In Proceedings of the 14th Workshop on Formal Techniques for Java-like
Programs, 42–49. ACM.

Kawrykow, Alexander, Gary Roumanis, Alfred Kam, Daniel Kwak, Clarence Leung, Chu
Wu, Eleyine Zarour, Luis Sarmenta, Mathieu Blanchette, Jérôme Waldispühl, et al.
2012. “Phylo: A citizen science approach for improving multiple sequence alignment.”
PloS one 7 (3): e31362.

Khatib, Firas, Seth Cooper, Michael D Tyka, Kefan Xu, Ilya Makedon, Zoran Popović,
David Baker, and Foldit Players. 2011. “Algorithm discovery by protein folding game
players.” Proceedings of the National Academy of Sciences 108 (47): 18949–18953.

Lee, Jihyun. 2009. “Universals and specifics of math self-concept, math self-efficacy, and
math anxiety across 41 PISA 2003 participating countries.” Learning and Individual
Differences 19 (3): 355–365.

Li, Wenchao, Sanjit A Seshia, and Somesh Jha. 2012. “CrowdMine: towards crowdsourced
human-assisted verification.” In Proceedings of the 49th Annual Design Automation
Conference, 1254–1255. ACM.

Logas, Heather, Richard Vallejos, JosephOsborn, Kate Compton, and JimWhitehead. 2015.
“Visualizing Loops and Data Structures in Xylem: The Code of Plants.” In Games and
Software Engineering (GAS), 2015 IEEE/ACM 4th International Workshop on, 50–56.
IEEE.

Logas, Heather, JimWhitehead,MichaelMateas, RichardVallejos, Lauren Scott, Dan Shapiro,
JohnMurray, Kate Compton, Joseph Osborn, Orlando Salvatore, et al. 2014. “Software
Verification Games: Designing Xylem, The Code of Plants.” In Foundations of Digital
Games (FDG 2014).

Mao, Ke, Licia Capra, Mark Harman, and Yue Jia. 2015. “A Survey of the Use of Crowd-
sourcing in Software Engineering.” RN 15:01.

Moffitt, Kerry, John Ostwald, Ron Watro, and Eric Church. n.d. “Making Hard Fun in
Crowdsourced Model Checking.”

Rothermel, Gregg, Sebastian Elbaum, Alex Kinneer, and Hyunsook Do. 2006. Software-
artifact infrastructure repository.

Schiller, Todd W, and Michael D Ernst. 2012. “Reducing the barriers to writing verified
specifications.” ACM SIGPLAN Notices 47 (10): 95–112.

Tuite, Kathleen. 2014. “GWAPs: Games with a Problem.” In Proceedings of the 9th Inter-
national Conference on the Foundations of Digital Games.

Watro, Ronald, Kerry Moffitt, Talib Hussain, Daniel Wyschogrod, John Ostwald, Derrick
Kong, Clint Bowers, Eric Church, Joshua Guttman, and Qinsi Wang. 2014. “Ghost
Map: Proving Software Correctness using Games.” SECURWARE 2014: 223.

–15–


