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ABSTRACT
The procedural generation of video game levels has existed for at least 30 years, but only
recently have machine learning approaches been used to generate levels without specifying
the rules for generation. A number of these have looked at platformer levels as a sequence
of characters and performed generation using Markov chains. In this paper we examine the
use of Long Short-Term Memory recurrent neural networks (LSTMs) for the purpose of
generating levels trained from a corpus of Super Mario Bros. levels. We analyze a number
of different data representations and how the generated levels fit into the space of human
authored Super Mario Bros. levels.
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INTRODUCTION
Procedural Content Generation (PCG) of video game levels has existed for many decades,
with the earliest known usage coming from Beneath Apple Manor in 1978. As an area of
academic study, there have been numerous approaches taken ranging from human-authored
rules of tile placement (Shaker et al. 2011), to constraint solving and planning (Smith et al.
2010). These approaches require the designer of the algorithm to specify either the rules
of the generation or a method for evaluating the generated levels. More recently, machine
learning approaches have been used so that a designer can train a generator from exam-
ples. These have ranged from matrix factorization (Shaker and Abou-Zleikha 2014,Sum-
merville and Mateas 2015), to a number of different Markov chain approaches (Dahlskog et
al. 2014,Snodgrass and Ontañón 2013,Summerville, Philip, et al. 2015), to different graph
learning approaches (Guzdial and Riedl 2015,Londoño and Missura 2015), to Bayesian ap-
proaches (Summerville, Behrooz, et al. 2015). A number of these approaches treat the level
as a sequence of characters, and use Markov chains to learn character-to-characters transi-
tion probabilities. These approaches can have good local coherence but struggle with global
coherence. This can be remedied by considering longer and longer histories, but this leads
to a rapidly exploding combinatoric space leading to a very sparse set of learned transitions.



Long Short-Term Memory recurrent neural networks (LSTMs) represent the state of the art
in sequence learning. They have been used for translation tasks (Sutskever et al. 2014),
speech understanding (Graves et al. 2013), video captioning (Venugopalan et al. 2014), and
more. In this paper we present a method for utilizing LSTMs for the purpose of learning
and generating levels. We examine eight different data representations for the levels and
compare the generated levels using a number of different evaluation statistics.

RELATED WORK
Machine learned platformer level generation hasmostly been performed via learningMarkov
chain transition probabilities. The transitions in the Markov chains have seen two major
approaches, either tile-to-tile transitions or vertical slices of the level. The vertical slice
approach was first used by Dahlskog et al. (2014) and was later used by Summerville et al.
(2015). In this approach the states of the Markov chain are taken as a vertical slice of tiles
and the transitions are learned from slice-to-slice. This has the benefit of directly encoding
vertical structure which is important due to the fact that certain tiles are much more likely
to be at the top (like empty tiles) and others are much more likely to be at the bottom (such
as the ground). However, this comes with the severe drawback of removing the ability to
generate novel vertical slices. It also has the problem that the state space is much larger than
just the number of tiles, making the learned transition space much sparser than just learning
tile-to-tile transitions.

Snodgrass and Ontañón (2013,2014) have used tile-to-tile transitions for the placement of
tiles. Because of this, they do not have the problems of the vertical slice approach, but this
brings a host of other issues. Namely, it can be far too likely for the system to generate
sequences of tiles that violate implicit semantic constraints, such as generating ground tiles
at the top of the level. Multiple attempts were made to reduce such problems via learning
different chains for varying heights, or learning a hierarchical Markov chain (). We build
on the tile-to-tile approach for the work we report here as it is better able to generalize over
a larger collection of levels. With the column based approach it is very easy to imagine that
a new level might have a column that has never been seen before and so the system will be
unable to generalize, but it is much harder to imagine a single-tile-to-tile transition that has
never been seen (unless it is one that should never be seen like an enemy embedded inside
a pipe).

The above approaches both have the drawback of no guarantees about playability. In Snod-
grass’s work, over half of the levels produced were unable to be completed by a simulated
agent (Snodgrass and Ontañón 2013). Summerville, et al. (2015) used Monte Carlo Tree
Search as a way of guiding Markov chain construction of levels to help guarantee a playable
level. This does allow for some authorial input on the part of a designer by letting them
change the reward function to create levels with different features (e.g. more/less gaps), at
the cost of biasing the generation away from the learned transition probabilities in ways that
might not be easily understood or resolved. Despite the different applications of Markov
chains, they all suffer from the same main drawback, that there is no good way to have a
long memory in the chain without needing massive amounts of data to fill the transition ta-
ble. This leads to good local coherence but poor global coherence, in that they can reliably
pick the next tile in a way that makes sense, but have difficulty handling larger structures or
patterns.
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The work of Guzdial and Riedl (2015) used clustering to find latent groupings and then
learned relative placements of tile blocks in Mario levels. This has the benefit of learning
structure over much longer ranges than is possible in the Markov chain examples. While
the work of Dahlskog was able to use 3 tiles worth of history Guzdial’s work considered
tile distances up to 18 tiles in distance. A similar graph approach was used by Londoño and
Missura (2015), but learned a graph grammar instead. Their work is unique in platformer
level generation in that they used semantic connections such as tile X is reachable from tile
Y instead of just physical connections.

Procedural generation via neural networks has most been focused on image and text gen-
eration. Both have typically been byproducts of trying to train a network for some sort
of classification process. Google’s Inceptionism (Szegedy et al. 2014) took the product of
training an image classifier and manipulated images to better match the set classification
class, such as dogs. Facebook’s Eyescream had image generation as the goal (Denton et al.
2015) and used adversarial networks, one network trying to generate images and the other
trying to determine if what it was seeing was generated or real.

Text generation from neural networks has been done by numerous people for various goals
such as translation (Sutskever et al. 2014), text classification (Graves 2013), and even trying
to determine the output of code simply by reading the source code (Zaremba and Sutskever
2014) and then writing what it believes to be the output.

The work of Graves () went beyond text generation and used sequences of stylus locations
and pressure to learn calligraphic character writing. Similarly, the DRAW system (Gregor
et al. 2015) used LSTMs to generate address signs learned from Google street view by using
an attentional system to determine where to focus and then using that as the sequencing of
where to place a virtual paint brush and what color to paint, e.g. it learns a sequence of
(x, y, r, g, b).

LSTM SEQUENCE GENERATION
In this section we will first cover how LSTM Recurrent Neural Networks operate. We will
then cover the basics of our data specification as well as the variants we used.

Recurrent Neural Network Architecture
Recurrent Neural Networks (RNNs) have been used for a number of different sequence
based tasks. They operate in a manner similar to standard neural networks, i.e. they are
trained on data and errors are back-propagated to learn weight vectors. However, in an RNN
the edge vectors are not just connected from input to hidden layers to output, they are also
connected from a node to itself across time. This means that back-propagation occurs not
just between different nodes, but also across time steps. However, a common problem with
standard RNNs is known as “the vanishing gradient problem” (Hochreiter 1991), where the
gradient of the errors very quickly dissipates across time. While different in why it occurs,
the end result is similar to the problem found with Markov chains, i.e. good local coherence
but poor global coherence.

LSTMs are a neural network topology first put forth byHochreiter and Shmidhuber (Hochre-
iter and Schmidhuber 1997) for the purposes of eliminating the vanishing gradient problem.
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Figure 1 Graphical depiction of an LSTM block.

LSTMs work to solve that problem by introducing additional nodes that act as a memory
mechanism, telling the network when to remember and when to forget. A standard LSTM
architecture can be seen in figure 1. At the bottom are nodes that operate as in a standard
neural network, i.e. inputs come in, are multiplied by weights, summed, and that is passed
through some sort of non-linear function (most commonly a sigmoid function such as the
hyperbolic tangent) as signified by the S-shaped function. The nodes with

∑
simply sum

their inputs with no non-linear activation, and the nodes with
∏

simply take the product
of their inputs. With that in mind, the left-most node on the bottom can be thought of as
the input to an LSTM block (although for all purposes it is interchangeable with the node
second from the left). The node second from the left is typically thought of as the input gate,
since it is multiplied with the input, allowing the input through when it is close to 1, and not
allowing the input in when it is close to 0. Similarly, the right-most node on the bottom acts
as a corresponding output gate, determining when the value of the LSTM block should be
output to higher layers. The node with the

∑
acts as the memory, summing linearly and as

such not decaying through time. It feeds back on itself by being multiplied with the second
from the right node, which acts as the forget gate, telling the memory layer when it should
drop whatever it was storing.

These LSTM blocks can be composed in multiple layers with multiple LSTM blocks per
layer, and for this work we used 3 internal layers, each consisting of 512 LSTM blocks
which can be seen in figure 2. The input layer to the network consists of a One-Hot encoding
where each tile has a unique binary flag which is set to 1 if the tile is selected and all others
are 0. The final LSTM layer goes to a SoftMax layer, which acts as a Categorical probability
distribution for the One-Hot encoding.

Our networks were trained using Torch7 (Collobert et al.) based on code fromAndrej Karpa-
thy (Karpathy 2015). In addition to choosing size and depth of the network, RNNs (and
subsequently LSTMs) come with the additional hyperparameter of how many time steps
to consider during the back-propagation through time, which we set to 200 data points. A
common problem in machine learning is that of memorization, where the algorithm exactly
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Figure 2 Graphical depiction of our chosen architecture. The green box at
the bottom represents the current tile in the sequence, the tile to the left the
preceding tile, and the tile to the right the next tile. The tile in the top orange
box represents the maximum likelihood prediction of the system. Each of the
three layers consists of 512 LSTM blocks. All layers are fully connected to the
next layer.

memorizes the input data at the expense of being able to generalize to unseen data. There
exist numerous methods to avoid this overfitting, but for this work we used dropout (Srivas-
tava et al. 2014). Dropout is a technique where during training a pre-specified percentage of
LSTM blocks are dropped from the network (along with their corresponding connections)
at random for each training instance. This has the effect of effectively training an ensemble
of networks during the training of one network and reduces the amount of co-adapting that
occurs across nodes. Having decided on the network architecture, we will now get to the
core of our data representation and what we mean by a data point.

Data Specification
LSTMs are most commonly used to predict the next item in a sequence. They do this by
producing a probability distribution over possible next items and predicting the most likely
item. For this to work, our data must be a sequence. If we were to consider a format such as
the one used by Dahlskog et al. (Dahlskog et al. 2014) we could simply consider a level as
a sequence of slices progressing from left-to-right, but this comes with multiple drawbacks:

• It can only reproduce vertical slices encountered in the training set - meaning that it
could be utterly unable to handle a previously unseen slice

• This drastically increases the size of the input space as we will see in a second
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Instead we treat each individual tile of a level from Super Mario Bros. as a point in our
sequence, that is, like a character in a string. The tile types we consider are:

• Solid - Any tile that is solid and has no other interactions, most commonly ground,
giant mushroom, or inert block tiles of which no distinction is made

• Enemy - Any enemy, again no distinctions are made between enemies
• Destructible Block - A block that can be destroyed by Super Mario

• Question Mark Block With Coin - A ?-Block that only contains a coin
• Question Mark Block With Power-up - A ?-Block that contains a powerup, either
a mushroom/flower, a star, or a 1-up

• Coin - A coin

• Bullet Bill Shooter Top - The top of a Bullet Bill shooting cannon

• Bullet Bill Shooter Column - The column that supports the top of the Bullet Bill
shooter

• Left Pipe - The left side of a pipe
• Right Pipe - The right side of a pipe
• Top Left Pipe - The top left side of a pipe
• Top Right Pipe - The top right side of a pipe
• Empty - The lack of all other tile types

Distinctions are made between the variants of ?-Blocks due to the extreme difference in
effect that they make in the game. The vast majority of ?-Blocks contain only coins and if
we were to ignore the difference between ?-Blocks we would be losing crucial information
about where the most important power-up bearing blocks are located. Pipes are one of the
most important structures in the game. Since previous systems have shown difficulty accu-
rately producing non-gibberish pipes (Snodgrass and Ontañón 2013), we want to consider
the different parts of the pipe separately. It is important to know that the left half of a pipe
is different from the right half in the sequence, as the latter can never be encountered before
the former.

Each of these tile types can be considered as a character in a string, but a platformer level
has 2 dimensions, not just 1, meaning that we have to induce an ordering across the 2 dimen-
sions. The naïve ordering would be left-to-right and most likely bottom-to-top, as the levels
progress from left-to-right and there is a higher density of important tiles at the bottom of
a level due to the nature of simulated gravity. However, this sequencing would be highly
problematic for most platformers. Levels in Super Mario Bros. are between 200 and 500
tiles in width, which would mean that the LSTM would need to remember for at least that
distance what tile it had placed in the previous row. While LSTMs are good at remembering
over longer distances, this would strain the algorithm for no particularly important reason.

Instead, we consider eight different induced tile orderings determined by answers to the
following three questions:
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• Bottom-To-Top or Snaking?
• Includes Path Information?
• Includes Column Depth Information?

We now discuss these possible orderings in depth.

Bottom-To-Top vs. Snaking

Figure 3 Illustration of the difference between going from bottom-to-top
(LEFT) and snaking (RIGHT) for sequence creation

As mentioned, we are considering levels vertically and then horizontally. This comes first
with a decision of whether to go bottom-to-top or top-to-bottom, of which we chose to go
from bottom-to-top due to the higher density of important, non-empty tiles at the bottom of
a level. This can be seen in the left of figure 3. To do this we include a special character in
the sequences to indicate when we have reached the top of the level and are moving to the
next column.

However, there is another, less intuitive manner of progressing through the level: snaking.
By snaking we mean alternating bottom-to-top and top-to-bottom orderings as seen in the
right of figure 3. In this snaking ordering we are following (Sutskever et al. 2014) which
demonstrated that by reversing input streams one can induce better locality in the sequence.
To see this, consider the pipe in figure 3. In the bottom-to-top ordering there are 17 tiles
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between the left and right halves of the pipe, while there are only 7 in the snaking order-
ing. Snaking also comes with the hidden benefit of doubling the size of our dataset. When
snaking we generate two sequences for a level, one that starts from bottom-to-top as well as
one that starts from top-to-bottom.

Path Information

In what we consider to be a novel contribution to the field of machine learned procedural
level generation, we also considered the path(s) that a player would/could take through the
level. A common problem with machine learned level generation has been in producing
levels that are playable. Snodgrass and Ontañón found that only roughly half of all lev-
els produced were able to be completed by a simulated agent. However, if we consider a
player’s path through the level as a crucial piece of information in the specification of the
level and include it in the training information, we are muchmore likely to generate playable
levels since we are not just generating the level geometry but also a player’s path through
the level.

We ran a simulated agent through existing levels using a tile-level A∗ agent. Any empty
space that the agent passed through was replaced with a special character denoting the
player’s path. We considered all paths that were within 10 moves of optimal for this, but
this could either be loosened to simulate worse paths or tightened to only consider optimal
paths.

Column Depth

We also considered how far into the level we are. Obviously, the LSTM has some memory
as to where it has been and therefore where it exists in the level, but our history of 200 tiles
means that in essence it only remembers approximately 12 columns in the past. This captures
most patterns that might be encountered, but is unlikely to capture larger considerations
such as a ramping in intensity as the player progresses further and further into the level.
To try to get the LSTM to understand level progression we introduced a special character
that is incremented every 5 columns. In other words columns 0-4 have no special character,
columns 5-9 have 1 special character, columns 10-14 have 2, etc.

RESULTS
We trained eight networks, one for each of the induced sequences. We had a total of 15 levels
from Super Mario Bros. and 24 levels from the Japanese Super Mario Bros. 2 for a total of
39 levels. We used a 70%-30% training-evaluation split in the course of the training. After
every 200 tiles in the training sequence we performed an evaluation on a held out evaluation
set, determining how well the LSTM was able to predict unseen sequences. We save this
version of the network if it has the best score on the evaluation set, with the belief that this
will be the network that has the best ability to generalize from the training set. When the
training reached a plateau for more than 2 epochs (runs through the training set) we stopped
training. The error criterion is the negative log-likelihood, which is 0 if the correct value is
predicted with 100% certainty and increases as the tile is less likely to be predicted.

The results of LSTMs over the evaluation task can be seen in table 1. The change that had
the biggest effect on performance was the inclusion of path information, with the networks
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Figure 4 The below ground seed (LEFT) and the above ground seed (RIGHT).

with paths doing roughly twice as well as the networks without. Interestingly, the other
changes considered without path information worsened network performance, but in tandem
with path information improved overall performance. This demonstrates the difficulty of
determining a good data specification; each non path change of the data specification away
from the naïve base case decreased the performance of the LSTM, but when combined with
the path information produced performance over twice as good as the next best network
and 20× better than the naïve, despite the fact that the most complex specification had a
vocabulary that was 36% larger from the naïve specification.

However, our goal is not to analyze howwell a sequence of tiles might have believably come
from an existing Super Mario Bros. game, but rather to generate new levels with properties
hopefully similar to existing Super Mario Bros. levels. To that end we used each of the final
trained networks to generate 4000 levels. Each generator was given a seed sequence and
then asked to generate until it reached an end-of-level terminal symbol 2000 times for each
of two different seeds, an underground and an above ground seed as seen in figure 4. Each
seed consists of three columns of tiles, as well as an initial special character denoting the start
of the level. We then analyzed these levels for a number of different properties. Some, such
as linearity and leniency, have been used to evaluate platformer level generation since their
inception (Smith and Whitehead 2010). Others are based off of more recent proposals from
Cannosa and Smith (Canossa and Smith 2015). In this evaluation we have also included the
metrics for the levels from the dataset. It is hard to generate an intuition for whether a given
metric is a good indicator that the generator is producing content that we should be happy
with, but since our goal is to produce levels that have properties similar to existing levels we
can compare how well the output space of our generator matches that of the existing levels.
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Snaking? Paths? Line #? Negative Log-Likelihood
N N N 0.0920
Y N N 0.1540
N Y N 0.0694
Y Y N 0.0573
N N Y 0.1376
Y N Y 0.1143
N Y Y 0.0404
Y Y Y 0.0177

Table 1 The error of the best network for each data format. The Snaking-
Path-Depth has the lowest error.

S? P? D? C e n d p l R2 j ji

Human Authored 100% 0.82 0.76 0.04 0.07 71.19 0.13 21.98 12.06
N N N 67% 0.81 0.55 0.03 0.09 47.68 0.15 20.66 10.65
Y N N 39% 0.77 0.52 0.04 0.1 33.46 0.12 28.61 6.81
N Y N 96% 0.8 0.72 0.04 0.09 59.56 0.15 24.17 12.17
Y Y N 93% 0.72 0.67 0.11 0.1 48.06 0.19 19.2 9.34
N N Y 51% 0.82 0.51 0.02 0.09 59.53 0.17 19.69 9.96
Y N Y 37% 0.76 0.44 0.09 0.1 45.99 0.1 15.04 6.68
N Y Y 94% 0.81 0.64 0.03 0.09 46.84 0.17 18.31 8.21
Y Y Y 97% 0.81 0.68 0.03 0.09 42.14 0.19 19.02 8.04

Table 2 The mean values for each of the considered metrics. Values in bold
are within 1 standard deviation of the original, human-authored levels.

The variants of generators are:

• S? - Y if the generator was trained on snaking data, N if bottom-to-top
• P? - Y if the generator had path information, N if not
• D? - Y if the generator had depth information, N if not

The metrics we considered were:

• C - The percentage of the levels that are completable by the simulated agent
• e - The percentage of the level taken up by empty space
• n - The negative space of the level, i.e. the percentage of empty space that is actually
reachable by the player

• d - The percentage of the level taken up by “interesting” tiles, i.e. tiles that are not
simply solid or empty

• p - The percentage of the level taken up by the optimal path through the level
• l - The leniency of the level, which is defined as the number of enemies plus the
number of gaps minus the number of rewards
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• R2 - The linearity of the level, i.e. how close the level can be fit to a line
• j - The number of jumps in the level, i.e. the number of times the optimal path jumped
• ji - The number of meaningful jumps in the level. A meaningful jump is a jump that
was induced either via the presence of an enemy or the presence of a gap.

Figure 5 A corner plot of the expressive range for the original levels. The his-
tograms along the diagonal are for each of the metrics listed along the bottom.
The others are 2D contour plots showing the density of levels with the bottom
metric being the X axis and the left metric being the Y axis.

In table 2 we can see the mean values of the level metrics for the different generators. A
metric value is bold if the value waswithin one standard deviation of the value of the original
levels. All of the generators generally performed well at matching the existing levels, at
least in these metrics. Certain metrics, like percentage of empty space, leniency, linearity,
percentage of decoration, # of jumps, and # of induced jumps were fairly consistently good
across all generators. Interestingly, the lengths of paths through the generated levels were
all consistent with each other and all were consistently higher than in the existing levels.
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Figure 6 A corner plot of the expressive range for the levels generated by the
Snaking-Path-Depth generator.

Not surprisingly, the generators with path information did much better at producing com-
pletable levels. To our knowledge, the playability of our generated levels is the best of any
generator employing machine learning, beating the best reported of 66% (Snodgrass and
Ontañón 2015). The 97% beats even the best reported human-authored system from the
2011 Mario AI Competition by Mawhorter of 94% as reported by Snodgrass and Ontañón
(Snodgrass and Ontañón 2015).

Following are two corner plots which show the density of generated levels across a single
dimension (the outer diagonal corresponds to a histogram for the metric along the bottom)
or across two dimensions (the left and the bottom corresponding to x and y dimensions). In
figure 5 we can see the original human-authored levels and in figure 6 we can see the results
from the Snaking-Path-Depth generator. Generally, the generator does a very good job of
matching the expressive range of the original levels.

–12–



Figure 7 5 levels from the Snaking-Path-Depth generator without path infor-
mation displayed.

However, until we are able to train a system to analyze a level for how good it is or how
fun it is (which seems a lofty AI-complete goal), such metric-based evaluation must be sup-
plemented with an informal analysis of example generated levels to verify that the metrics
actually correspond to human perceptions of high-quality levels. Following are a selection
of levels chosen at random from the Snaking-Path-Depth generator. The first 5 are lev-
els as they would be shown, the latter 5 with the generator’s included path information.
We believe that these random samples demonstrate the quality of the generated levels and
showcase the breadth of patterns it has learned, such as a series of pipes of differing heights,
pyramidal structures, and even sequences of unconnected platforms that are still playable.
But it is just a random sampling and all of the generated levels can be found online1.

Ignoring the fact that the LSTMs are able to generate playable levels, it is interesting that
the LSTMs are even able to produce coherent column-to-column tile placements. Even the
fact that the LSTMs never incorrectly produce a column delimiting character is testament to
their sequence learning capabilities. Without fail the LSTMs only produce columns of 16
tiles, exactly the size of the input columns. This does not come from telling the generator
to stop or reset after 16 tiles, but from learned sequences.

CONCLUSION AND FUTURE WORK
In this paper we have demonstrated a novel use of LSTM Recurrent Neural Networks for
the generation of platformer levels, specifically Super Mario Bros. levels. Towards this,
we have created multiple novel ways of interpreting a Super Mario Bros. level as a linear
sequence. Most importantly, we have demonstrated that the introduction of player path
information can dramatically improve the quality of generated levels, most specifically in
the playability of generated levels, but also in terms of exhibiting level metrics closer to the
human-authored levels. We have also used a wider range of metrics for characterizing our
levels than have previously been used, allowing us to perform a more nuanced comparison
between human-authored and generated levels.
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Figure 8 5 levels from the Snaking-Path-Depth generator with generated path
information displayed.

We believe that the introduction of path information to the generation process also opens
new avenues for automated analysis of levels. When a designer first designs a level, they
often have a hypothesis of what the player will do before any playtesting has occurred. This
system works in a similar way by assigning likelihoods to where a player will go based on
observation. Wewould like to extend this system so that it not only generates levels, but also
analyzes presented levels. While it is possible to send simulated agents through the level
to generate analysis, something we did for this work, future work may enable the system to
make suggestions based solely on observations without explicitly modeling or simulating a
player. We would like to utilize human playthroughs gathered from gameplay video, to be
able to suggest paths that actual human players would take instead of just simple A∗ agents.

Recent work in neural network learning have used attention based systems to learn se-
quences from data that is not typically thought of as a sequence, such as an image. While
the sequencing in this work is able to produce good results, we feel it could be made more
robust by incorporating the sequencing into the learning task. We also believe that this
would enable the system to operate in regimes where a simple left-to-right progression is
unsuited, such as games like The Legend of Zelda or Metroid . These games tend to have
highly non-linear progressions with numerous backtrackings and dead-ends required during
play. An attentional system could learn to navigate these non-linear maps.

A similar concern for future work is deconvolving time and space. In standard platformer
levels, the player progresses from left-to-right, which has led to many generators, this one
included, to operate as if time has a linear mapping to space, e.g. x-coordinate. If we were to
treat the screen as a tensor with dimensions of width, height, and tile type, we could perform
a Tensor auto-regression across time. For a game like Super Mario Bros., this would work
simply as progressing from left-to-right, but for the above mentioned non-linear games, this
would work to eliminate the spurious correlation of time and x-coordinate.
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