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 ABSTRACT 

This paper describes an alternate approach to the modeling 

of game systems and game flow with Petri nets. Modeling 

languages usually used in this area are of limited efficiency 

when it comes to validating the underlying game systems. 

We provide a case study to show that Petri Nets can be used 

with advantages over other modeling languages. Their 

graphical notation is simple, yet it can be used to model 

complex game systems. Their mathematically defined 

structure enables the modeled system to be formally 

analyzed and its behavior’s simulation offers the possibility 

of detecting unwanted behaviors, loop-holes or balancing 

issues while still in the game design stage. 
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 INTRODUCTION 

Visual communication is an essential part of software 

design. In game development projects, this sentence 

remains true. Be it for identifying and constructing use 

cases, charting the flow between menus, modeling a 

sequence of events or showing the relationship between 

actors in the game, diagrams and charts are extensively 

used throughout the conceptual and design phases of game 

development [9, 10]. The representations used for this 

purpose, however, present a number of limitations when it 

comes to the verification, validation and simulation of the 

underlying system [11, 17, 18]. This prevents designers 

from using these diagrams in a more effective way, such as 

for finding balancing issues or problems within the game's 

flow. 

In this paper, we will explore Petri Nets for modeling a 

game’s systems and flow. We will try to show that this 

approach can be as simple and yet more powerful than other 

graphical tools used in this domain. 

We will begin by analyzing modeling languages used in 

game design. Next we will describe Petri Nets structure, 

how they work and some useful extension to their basic 

structure. In the following section we will develop the case 

study to show how Petri Nets can be used in describing 

game systems. We will then discuss some of their 

advantages and disadvantages when compared to the other 

modeling languages. 

 MODELING IN GAME DESIGN 

Natural language is easy to read, but it is not easy to review 

a large natural language specification [15]. For that reason 

we use charts and diagrams to explain things visually and 

synthetically. This kind of communication can be as 

expressive as and easier to understand than the verbal 

descriptions used for the same information [15]. People 

doing game design make intensive use of visual 

communication [9, 10, 12, 13, 19]. The flow of the game is 

usually depicted visually instead of a pure textual approach 

[10, 13, 19]. We will now take a look at some of the most 

popular diagrams in this branch of software design. 

Unified Modeling Language (UML) is a modeling language 

widely used in software specification and design. As of 

version 2.0, it comprises 13 diagrams, divided into 6 

categories [21]. A number of these can be of great use to 

game design [9]. Use cases are used to represent actors 

(player, external systems, etc.) and their actions or 

interactions with the system. They can be used to identify 

and collect requirements in the early stages of conception. 

Other diagrams, like sequence, class and activity diagrams, 

can help game designers further document and structure 

ideas and later help the programmers structure their code in 

the development phase. 

As proposed in [9], although with a bigger focus on use 

case diagrams, UML makes the game designer divide 

his/her project in a number of different kinds of diagrams, 

each one serving its purpose. Those who are going to read 

those diagrams have to be able to understand all of them 

and cope with possible semantic inconsistencies [18], since 

they define a range of possible interpretations instead of 

conveying an exact meaning [18, 20]. UML diagrams, 

especially when used at the conceptual level, lack formal 

semantics that prevent them from being used in rigorous 

model analysis [11, 17, 18]. In large, complex models this 

can present a problem since validation can be 

compromised. Although there are tools for analysis and 



simulation, these use intermediate models like graphs or 

Petri nets [11] or focus more on syntax and consistency 

checks [17]. There are also a number of proposals for the 

definition of formal semantics [11, 17, 20], but none of 

these are yet part of the UML standard. 

Other popular diagrams are flowcharts. As the name states, 

it is a chart where one can model the flow of events in a 

system. They are made up processing steps, conditional 

branching nodes and arrows connecting them. Flowcharts 

can be used to explain the steps needed for a certain action 

to occur or simply to document the flow of the game [10, 

12, 13, 16]. Decision trees are a type of flowchart that 

branch on every situation where the player can make a 

decision, effectively mapping all the possible decisions and 

outcomes in a game [16, 19]. 

Flowcharts are limited to the modeling of sequential, non-

concurrent systems, which is something most games are not. 

Simulation can be done only in a case-by-case fashion, as 

there is no way to actively insert, for instance, conflict or 

concurrency for resources. While they can be used to chart 

simple decision based systems, when decision depends of 

external processes running in parallel their capabilities are 

limited. 

Petri nets are both a mathematical and a graphical tool for 

modeling, analyzing and designing discrete event systems 

used in many different industries [1]. When compared with 

behavior modeling based on Statecharts, e.g., [15], Petri 

Nets tend to be, in general, a more economic representation 

when state-space complexity increases. 

In [22], Brom and Abonyi describe a technique for 

"authoring a nonlinear plot and managing a story" 

according to this plot using Petri nets. This technique makes 

use of both the formal and graphical natures of Petri nets 

for drafting, simulating and building plots for a story-driven 

virtual reality application. It was later applied successfully 

to the story manager of serious games Europe 2045 [24] 

and Karo [23]. We believe that Petri nets can be applied to 

other areas of game design, not just plot description or story 

managing.  

 OVERVIEW OF PETRI NETS 

Petri Nets were created by German mathematician Carl 

Adam Petri for the purpose of describing chemical 

processes [3]. They can be applied to many different areas, 

such as the modeling of production lines, distributed-

database systems and communication networks or the 

design and analysis of workflows and business processes, 

among many others [1, 2]. They can also simulate such 

processes with the help of a number of computer 

applications [4, 5, 6]. 

Due to the fact that Petri nets can be described as a set of 

algebraic equations [3], they are considered as a powerful 

analysis tool [1, 2, 7]. Petri nets can be used to check for 

the existence of deadlocks or starvation, analyze 

concurrency between processes, precedence relations 

amongst events or the existence of appropriate 

synchronization [1]. They can also be used to measure the 

performance of the underlying system [1, 7]. 

Petri nets can be described both mathematical and 

graphically. For the sake of simplicity, this paper will not 

feature the mathematical description. Most of the Petri net 

diagrams present in this document were made using Yasper 

[5]. To illustrate a difference in notation, another diagram 

was made using Woped [6]. 

Graphically, Petri nets are described as a diagram with 

circles (places), bars or squares (transitions) and arrows 

(arcs) connecting them. Depending on the interpretation the 

designer wishes to give them, places can represent 

conditions, input/output data or resources. Transitions can 

be interpreted as events, tasks or clauses, among others [2]. 

Places can have multiple arcs from and to transitions and 

transitions can have multiple arcs from and to places. A 

transition can have arcs going back to its input places, 

symbolized in figure 1 by a double arrow. A place can hold 

one or more tokens, symbolized by one or more dots. 

Depending on the interpretation given to places, a token can 

represent resources or whether a condition is true or false 

[1]. In its basic incarnation, a transition is enabled and can 

fire when all the places that are connecting to it hold at least 

one token. When the transition fires, it removes (consumes) 

a token from all the incoming places and adds (produces) 

another token in all the outgoing places. 

In the example given in figure 1, T1 has one input place 

(P1) and two output places (P1 and P2) and it is enabled 

because all of its input places have tokens. In figure 2, T1 

has consumed a token from P1 and produced another in P1 

and P2. The transition can fire again indefinitely because 

P1 will always have a token. 

More complex behaviors can be modeled by adding places 

and transitions to the diagram. In figure 3 we have a 

situation where a F1 car is making a pit stop to change all 

of its tires. When the Stop transition fires, the places 

representing the tires – front and rear, left and right – 

receive a token. From that point on, all the tires are changed 

concurrently. The Go transition can only fire when all the 

“Tire changed” places that are connected to it hold a token 

 
Figure 2: Result after transition has fired 

 
Figure 1:  Simple Petri Net with two places and one 

transition 



(logical AND). This means that the car can only leave the 

pit when all the tires are in place. 

Several extensions have been developed over the years in 

order to improve the Petri nets' capabilities or to simplify its 

design and readability. 

One of such extensions is the inhibitor arc. This special 

kind of arc enables a transition when no tokens are present 

at the input place [1]. It is graphically represented by a line 

with a small circle where the arrow would be. In figure 4, 

T1 is enabled since P1 has a token and P2, who is 

connected to T1 trough an inhibitor arc, is empty. 

Sometimes it may also be useful to delete tokens from 

places when certain transitions occur. When a stop 

condition is reached and you wish to stop processes running 

in parallel, for instance. For these cases there is a special 

kind of arc call the reset arc, usually represented by a 

dashed line [5]. When the transition connected to the arc 

fires, the place on the other end is emptied of its tokens. 

Another useful extension involving arcs works by 

associating weights to them. Weights correspond to the 

number of tokens that must be removed or added from or to 

a place when a transition fires. The transition cannot fire 

while its input places do not have a number of tokens equal 

to the weight of the arc that connects them [1]. In the 

examples given up to now, we can consider all of the arcs to 

have a weight value of 1, since the transitions associated to 

them add/remove a single token to/from the corresponding 

place. 

Some extensions can simplify Petri nets greatly. In figure 7 

we are modeling a logical XOR by using two different 

transitions. P3 will get a token if T1, T2 or both transitions 

are fired. 

In figure 8, however, we need only one transition to achieve 

the same result. Other transitions of this kind include XOR-

splits (where we can choose from multiple outgoing places) 

and mixes of AND and XOR transitions. The notation for 

this type of transitions varies among Petri net modeling 

software between the diamond in figure 8 and the boxes in 

figure 9 [5, 6, 7]. 

Places can also function as branching points when they 

have more than one outgoing arc. In automatic simulation 

this transition is usually picked at random, but one can add 

guard expressions [8] or different probabilities [5] to 

transitions or arcs in order to simulate different behaviors. 

Transitions can also be timed (timed Petri nets) and tokens 

can have different values and attributes throughout the net 

(colored Petri nets) [7].  

Hierarchical structuring is a feature shared by many Petri 

Net design and simulation software [5, 8]. In order to keep 

the diagrams simple while modeling complex systems, we 

can divide a complex Petri Net into smaller, hierarchically 

related nets and spread them across separate diagrams. This 

makes it possible to model a large and complex system 

while still being able to explain the way it works in a 

general, simpler diagram. 

This can be illustrated by taking a look at the pit stop 

 
Figure 3: Pit stop. The car enters the pit, stops,  

has its tires changed and leaves. 

Figure 8: XOR-join 

transition 

Figure 9: XOR-join 

alternate notation 

Figure 7: XOR with 

multiple transitions 

 
Figure 5: Net with reset arc. 

T1 fires, P3 will be emptied. 

 
Figure 6: Arcs with weights. 

When fired, T1 consumes 3 

tokens and produces 1 

            
Figure 4: Petri net with 

inhibitor arc 



example given earlier in figure 3. We can hide the details of 

the tire changing process by moving it inside a subnet 

construct [5, 7]. 

This results in the diagram in figure 10. This construct takes 

the shape of a transition that aggregates the places and 

transitions we had before [7], simplifying both the reading 

and understanding of the diagram. Since the elements that 

were in figure 3 are still part of the Petri net, we can 

simulate the process in the exact the same way as we would 

if we didn't use hierarchies.  

 CASE STUDY OF PETRI NETS IN GAME DESIGN 

We will now illustrate the use of Petri Nets as a modeling 

language in game design, the expressiveness of these 

diagrams and the ability to simulate the flow of the game 

with them, by resorting to a few examples. The diagrams 

present in this section are part of a game we are working on. 

The game's main objective is to promote an experimental 

and systematic research attitude in a simulated environment, 

managing knowledge needs and acquisition. The game is 

inspired by historical accounts of the methods followed for 

navigation and mapmaking of land coasts and maritime 

routes during the Portuguese Discoveries. Players play the 

role of a ship's captain on a mission to explore and chart an 

unknown world. The game's focus is mainly on the player's 

ability to evaluate his/hers situation based on how much 

he/she knows. Careful preparation, good information 

management and negotiation skills are essential to be able 

to chart the terrain and progress. 

 Example 1: Interaction with natives 

Throughout the game, players will encounter situations 

where they will need to negotiate with the natives in order 

to get supplies or information from them. The way the 

natives respond to the player's requests is based on their 

past interactions with the player and the way he/she makes 

the request. The way envisioned for this process is loosely 

based on a system present in an old strategy game called 

Centurion: Defender of Rome (developed by Bits of Magic 

and published by Electronic Arts in 1990). Every time the 

player enters a region of the map he/she doesn't control, 

there's an encounter between the player and the region's 

leader. Based on a number of factors, including the way the 

player talks to the barbarian leader, you will either end up 

in a battle, retreating or negotiating an alliance.  

In our case, the general interaction process is described by 

the Petri Net diagram in figure 11. The player starts by 

making a request to the natives, which can be done in one 

of three ways: in a pleasant, neutral or unpleasant tone. 

Based on the way the player made the request and their 

opinion of him/her, the natives then give one of 3 possible 

answers, which can also be considered pleasant, neutral or 

unpleasant by the player (discount, normal price or 

overprice, for instance). The natives' opinion may change 

according to their previous thoughts on the player and 

his/her "tone". The whole decision process is represented in 

the diagram on figure 11, by the Decision subnet transition. 

This subnet takes the player's request and the natives' 

opinion as inputs and outputs the natives' answer and new 

opinion. The diagram could be further simplified by moving 

the transition choice for the request into the subnet. Still, we 

leave it like this to show the kind of requests the player can 

make at the "parent" diagram. 

The place "Unpleasant opinion" already has a token, 

meaning that the natives' current opinion of the player is 

negative. When a request is made, both the token from this 

Figure 10: Pit stop with hierarchies. 

 
Figure 11: Request-answer process 



place and the player's request go into the Decision subnet. 

In this subnet, seen in figure 12, places marked with an "i" 

represent external inputs and places marked with an "o" 

represent external outputs. These correspond to places in 

the parent diagram. Inputs and outputs can only have one 

incoming or outgoing arc, so in this case there is an extra 

transition and place for each one of them. Transitions 

leading to answers fire according to the distribution of 

tokens in the request and opinion places. A pleasant answer, 

for instance, can be the result of a pleasant or neutral 

request and a positive opinion. Both these transitions also 

result in a positive opinion. 

Since "Unpleasant opinion" already has a token, we can tell 

by the outgoing arcs that the answer is going to be 

unpleasant no matter what the player says. Still, he can 

make the natives change their opinion to neutral by making 

a request in a pleasant tone. This is symbolized by the "P 

req - U op" transition. It can fire when both "Unpleasant 

opinion" and "Pleasant request" have a token. It then goes 

and deposits a token in "Unpleasant answer" and in 

"Neutral opinion". 

This approach can still be extended by adding the 

neighboring countries' opinion to the equation. This way, a 

bad choice on the player's part can have an impact later on 

in the game by influencing the behavior of natives he/she 

hasn't even been in contact with. Simulation can be used in 

order to show how different kinds of requests and opinions 

lead to different results. It can also be used to count the 

number of tries the player has to make in order to change 

the natives' opinion to a positive one. 

 Example 2: Merchant ship 

The merchant ship described here is projected as a 

computer-controlled unit, even though these diagrams can 

also easily describe the decision making process of a human 

player. This unit loads cargo from a harbor and takes it to 

another friendly harbor, where it unloads and reloads again. 

The ship is unarmed and cannot repair itself away from the 

harbor, which will affect the decisions it will make 

throughout its journeys. 

The ship starts empty, inside the harbor. After it loads the 

cargo, it's ready to set sail. Sailing can have two possible 

outcomes, or in this case, outputs: the ship either gets to a 

harbor (be it its destination or its starting point) or it is 

destroyed. Since the sailing aspect is the most complex, it 

was made into a subnet, in figure 14. Inside this subnet we 

have the possible actions from the unit, its location in 

respect to the destination, the game elements that can affect 

its journey and the decision making process. 

To understand what is represented in the Sailing subnet 

some additional context is needed. In the game you have 

two different regions: coastal and high sea. Ships in high 

sea take damage from the waves, but are safe from pirates 

and rocks. The sea doesn't damage the ship if it's close to 

the coast, but pirates and rocks may appear. This being 

said, the transition next to the place "High sea" should 

actually be a timed transition in order to simulate this aspect 

accordingly. Due to software constraints, though, that 

wasn't possible. 

Figure 12: Decision subnet 

 
Figure 13: A merchant ship's journey 



Taking a closer look at the Sailing subnet, while the ship is 

at sea, it will continuously evaluate the distance to its 

destination, as well as being in constant alert for pirates or 

rocks. It also starts its journey with full energy. If it finds 

pirates or rocks, it will enter the decision process. This 

process takes the finding, the ship's energy and the distance 

to it's destination as inputs. The energy is constantly 

monitored and will change along the trip if the ship moves 

into the high seas, takes a shot from a pirate or hits a rock. 

If energy reaches 0, that means the journey has ended in a 

shipwreck. Every time something happens, the energy that 

is used as input for the decision process is reset to insure 

the decision is made with up-to-date values. When the ship 

reaches the harbor area, it is automatically repaired. When 

this transition fires, it is important from a simulation point 

of view to clear both the distance tokens and the energy 

tokens with reset arcs. This way, when the ship returns to 

sail, all is back to the original condition. 

The energy subnet in figure 15 has three places that 

symbolize the amount of energy the ship has. "Maximum 

energy" starts with 5 tokens, "medium energy" with 2 and 

"minimum energy" with 1. This makes the ship's total 

Figure 14: Sailing subnet. Further down the hierarchy there are two other subnets, Energy and Decision. 



energy 10 tokens, since an extra token is added to "medium 

energy" and "minimum energy" when the transitions 

leading to them fire. 

Inhibitor arcs are placed in the "suffered damage" 

transitions to insure that tokens are removed from the right 

place. The middle "suffered damage" transition, for 

instance, is there to remove tokens from "medium energy". 

That being the case, it's only logical that it can only fire 

when "maximum energy” is empty. When these transitions 

fire, they will also add a token to their respective output. 

Between the max., med. and min., energy places, there's a 

transition with two places named "controller". This is here 

to insure that the "energy reduced to half" and "energy 

reduced to minimum" transitions can only fire once, since 

the condition for them to fire is that the previous energy 

level is empty. By adding an extra condition, we prevent the 

transition from firing indefinitely. 

When the ship is being repaired, these places are cleared, 

along with the damage and energy ones. Then, a final 

transition with outgoing weighted arcs is used to put the 

initial number of tokens back into the energy places before 

returning to the parent net.  

The energy outputs from this subnet are valuable inputs for 

the decision making process. For this, like in the previous 

case, we have a decision subnet. As stated before, if the 

ship finds pirates or rocks, it will enter the decision process. 

The Decision subnet outputs the course of action the unit 

will take according to its position, its energy and the type of 

threat. If the harbor is close, the ship will keep on going no 

matter what. This means tokens from other inputs don't 

count in this case, so they will be cleared with the help of 

reset arcs. 

If it is far, however, both the current energy level and the 

type of threat have to be taken into account. To simplify the 

diagram, we grouped this distance with the current energy 

using three other transitions. Being far and with only a few 

energy tokens left has the opposite effect of being close to 

the harbor, but it also doesn't need to know the type of 

threat, in order to decide what to do next. If on the other 

hand the unit as a lot or some energy, it might want to 

analyze the situation a little further. When the final 

transitions are fired, the output of this subnet is taken to the 

Figure 15: Energy subnet 



parent Sailing net, back into the "At sea" place, enabling its 

transitions once again and restarting this cycle. 

We could still model and simulate this whole system 

without both the decision and energy subnets. These could 

be replaced by a simple XOR, giving the designer the 

power to choose what to do next. It is interesting, though, to 

give some extra detail to models in order to test some 

concepts. 

Balancing issues can be detected in simulation of this 

system. If the journey ends in a shipwreck too many times, 

then there can be a problem with the damage or with the 

way decisions are made. If there are no shipwrecks, though, 

this may mean that the game is too easy. 

 ADVANTAGES AND INCONVENIENCES OF 
MODELING GAME LOGIC WITH PETRI NETS 

Once you know how transitions work, Petri Net diagrams 

can become easier to read and to understand. It has a simple 

notation, being composed of only circles, bars or boxes and 

at most three types of arcs, when compared with UML's 

multiple diagram types [21] even if only using some of 

them for designing game systems [9]. Text descriptions are 

usually very short, and not all transitions/places need names 

(e.g., see figure 16). 

The use of hierarchies of diagrams also enables them to 

represent complex systems in a simpler way while 

preserving or reinforcing semantics of each diagram. We 

can get the big picture of the game by looking at one or two 

diagrams, and then move down the hierarchy to understand 

the way specific things work. 

The Petri Nets' ability to model system with concurrent 

operations and conflicts is well documented [1, 2, 3, 7]. 

This can be of great help for game designers trying to 

model real-time action and strategy games. In figure 14, for 

instance, we are modeling distance evaluation (albeit in a 

simple way), the ship's energy and what may affect it, its 

journey and its decision making process all at the same 

time. In multiplayer online games the complexity imposed 

by concurrent game events can pose even more complex 

modeling scenarios. 

Also, being a mathematically well-founded structure, Petri 

Nets can be verified, validated and simulated with a number 

of analysis methods and tools [1, 7]. The diagrams that 

were made to model the game behavior can also be used to 

check for issues in the game design. Balancing the flow of a 

game is a task that is usually done only after some form of 

game prototyping enables playtesting [16]. Petri Net 

modeling gives game designers a way of finding problems 

before the game is in actual development. This can be 

especially important for simulating multiplayer or 

heterogeneous game designs whose dynamic properties are 

typically more difficult to foresee. 

Like in most graphical tools, growing complexity can 

become an issue. Even with hierarchies, some diagrams can 

grow to become very complex. In figure 12, for instance, 

the number of lines crossing paths hinders readability, even 

if the diagram is still fairly simple. Just by adding the 

neighbors' opinion to the equation, the increased complexity 

would likely make the diagram hard to read. Moving some 

sections to subnets can simplify the picture, but it makes it 

harder to view the whole system, unless each diagram 

retains a clear semantic role in the whole model  

In figure 15 it is implied that cannon shots, rocks and waves 

do the exact same damage to the ship. From a 

representation point of view one could argue it doesn't 

really matter, but in simulation it can lead to awkward 

results. One could try to use different transitions with 

weighted arcs to represent different levels of damage. 

However, if the weight of the arc is bigger than the number 

of tokens present, the transition would never fire, leaving 

the ship undamaged. This is a limitation of using simple 

Petri Nets models, which can be partly overcome with the 

adoption of an extension for colored tokens. This extension 

provides tokens with variable attributes and transitions that 

can choose the type of tokens to remove/add and change 

these attributes. This means that the diagram in figure 15, 

for example, could be simplified and model different types 

of damage by adding variables and conditions to tokens and 

transitions respectively. 

Figure 16: Decision subnet.  

This outputs the course of action the unit will take. 



 CONCLUSIONS 

In this paper we discussed the applicability of Petri Nets to 

the modeling of game systems and game flow. This is an 

area where Petri Nets can be of value, especially if we are 

concerned with modeling game scenarios with concurrency. 

As a graphical tool, we concluded that Petri Nets can be 

expressive and easy to understand. Their limited number of 

representation elements contrast with the large array of 

diagrams and concepts in other notations in popular 

modeling languages such as UML, making them easier to 

learn, although limited to describing system behavior. Petri 

nets can be useful for modeling decision making processes 

that depend of several preconditions. Simple agent 

behaviors as well as player's choices can be modeled and 

simulated. This is enhanced by a Petri net's capability of 

modeling concurrent operations. Petri Nets have formal 

semantics that enable them to be verified and simulated. 

This aspect can prove to be very useful for game designers, 

since they can evaluate some play time characteristics while 

still in the design phase. We are still evaluating if the 

adoption of colored Petri Nets can help manage the needs 

for representing more complex situations retaining economy 

of representation.  
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