

Breaking New Ground: Innovation in Games, Play, Practice and Theory. Proceedings of DiGRA 2009

© 2009Authors & Digital Games Research Association (DiGRA). Personal and educational classroom use of this paper is allowed,

commercial use requires specific permission from the author.

Modeling Games with Petri Nets

Manuel Araújo

Departamento de Engenharia Informática

Faculdade de Ciências e Tecnologia

Universidade de Coimbra

Coimbra, Portugal

maraujo@student.dei.uc.pt

Licínio Roque

Departamento de Engenharia Informática

Faculdade de Ciências e Tecnologia

Universidade de Coimbra

Coimbra, Portugal

lir@dei.uc.pt

 ABSTRACT

This paper describes an alternate approach to the modeling

of game systems and game flow with Petri nets. Modeling

languages usually used in this area are of limited efficiency

when it comes to validating the underlying game systems.

We provide a case study to show that Petri Nets can be used

with advantages over other modeling languages. Their

graphical notation is simple, yet it can be used to model

complex game systems. Their mathematically defined

structure enables the modeled system to be formally

analyzed and its behavior’s simulation offers the possibility

of detecting unwanted behaviors, loop-holes or balancing

issues while still in the game design stage.

 Keywords

Game design, Petri Nets, game flow modeling, simulation

 INTRODUCTION

Visual communication is an essential part of software

design. In game development projects, this sentence

remains true. Be it for identifying and constructing use

cases, charting the flow between menus, modeling a

sequence of events or showing the relationship between

actors in the game, diagrams and charts are extensively

used throughout the conceptual and design phases of game

development [9, 10]. The representations used for this

purpose, however, present a number of limitations when it

comes to the verification, validation and simulation of the

underlying system [11, 17, 18]. This prevents designers

from using these diagrams in a more effective way, such as

for finding balancing issues or problems within the game's

flow.

In this paper, we will explore Petri Nets for modeling a

game’s systems and flow. We will try to show that this

approach can be as simple and yet more powerful than other

graphical tools used in this domain.

We will begin by analyzing modeling languages used in

game design. Next we will describe Petri Nets structure,

how they work and some useful extension to their basic

structure. In the following section we will develop the case

study to show how Petri Nets can be used in describing

game systems. We will then discuss some of their

advantages and disadvantages when compared to the other

modeling languages.

 MODELING IN GAME DESIGN

Natural language is easy to read, but it is not easy to review

a large natural language specification [15]. For that reason

we use charts and diagrams to explain things visually and

synthetically. This kind of communication can be as

expressive as and easier to understand than the verbal

descriptions used for the same information [15]. People

doing game design make intensive use of visual

communication [9, 10, 12, 13, 19]. The flow of the game is

usually depicted visually instead of a pure textual approach

[10, 13, 19]. We will now take a look at some of the most

popular diagrams in this branch of software design.

Unified Modeling Language (UML) is a modeling language

widely used in software specification and design. As of

version 2.0, it comprises 13 diagrams, divided into 6

categories [21]. A number of these can be of great use to

game design [9]. Use cases are used to represent actors

(player, external systems, etc.) and their actions or

interactions with the system. They can be used to identify

and collect requirements in the early stages of conception.

Other diagrams, like sequence, class and activity diagrams,

can help game designers further document and structure

ideas and later help the programmers structure their code in

the development phase.

As proposed in [9], although with a bigger focus on use

case diagrams, UML makes the game designer divide

his/her project in a number of different kinds of diagrams,

each one serving its purpose. Those who are going to read

those diagrams have to be able to understand all of them

and cope with possible semantic inconsistencies [18], since

they define a range of possible interpretations instead of

conveying an exact meaning [18, 20]. UML diagrams,

especially when used at the conceptual level, lack formal

semantics that prevent them from being used in rigorous

model analysis [11, 17, 18]. In large, complex models this

can present a problem since validation can be

compromised. Although there are tools for analysis and

simulation, these use intermediate models like graphs or

Petri nets [11] or focus more on syntax and consistency

checks [17]. There are also a number of proposals for the

definition of formal semantics [11, 17, 20], but none of

these are yet part of the UML standard.

Other popular diagrams are flowcharts. As the name states,

it is a chart where one can model the flow of events in a

system. They are made up processing steps, conditional

branching nodes and arrows connecting them. Flowcharts

can be used to explain the steps needed for a certain action

to occur or simply to document the flow of the game [10,

12, 13, 16]. Decision trees are a type of flowchart that

branch on every situation where the player can make a

decision, effectively mapping all the possible decisions and

outcomes in a game [16, 19].

Flowcharts are limited to the modeling of sequential, non-

concurrent systems, which is something most games are not.

Simulation can be done only in a case-by-case fashion, as

there is no way to actively insert, for instance, conflict or

concurrency for resources. While they can be used to chart

simple decision based systems, when decision depends of

external processes running in parallel their capabilities are

limited.

Petri nets are both a mathematical and a graphical tool for

modeling, analyzing and designing discrete event systems

used in many different industries [1]. When compared with

behavior modeling based on Statecharts, e.g., [15], Petri

Nets tend to be, in general, a more economic representation

when state-space complexity increases.

In [22], Brom and Abonyi describe a technique for

"authoring a nonlinear plot and managing a story"

according to this plot using Petri nets. This technique makes

use of both the formal and graphical natures of Petri nets

for drafting, simulating and building plots for a story-driven

virtual reality application. It was later applied successfully

to the story manager of serious games Europe 2045 [24]

and Karo [23]. We believe that Petri nets can be applied to

other areas of game design, not just plot description or story

managing.

 OVERVIEW OF PETRI NETS

Petri Nets were created by German mathematician Carl

Adam Petri for the purpose of describing chemical

processes [3]. They can be applied to many different areas,

such as the modeling of production lines, distributed-

database systems and communication networks or the

design and analysis of workflows and business processes,

among many others [1, 2]. They can also simulate such

processes with the help of a number of computer

applications [4, 5, 6].

Due to the fact that Petri nets can be described as a set of

algebraic equations [3], they are considered as a powerful

analysis tool [1, 2, 7]. Petri nets can be used to check for

the existence of deadlocks or starvation, analyze

concurrency between processes, precedence relations

amongst events or the existence of appropriate

synchronization [1]. They can also be used to measure the

performance of the underlying system [1, 7].

Petri nets can be described both mathematical and

graphically. For the sake of simplicity, this paper will not

feature the mathematical description. Most of the Petri net

diagrams present in this document were made using Yasper

[5]. To illustrate a difference in notation, another diagram

was made using Woped [6].

Graphically, Petri nets are described as a diagram with

circles (places), bars or squares (transitions) and arrows

(arcs) connecting them. Depending on the interpretation the

designer wishes to give them, places can represent

conditions, input/output data or resources. Transitions can

be interpreted as events, tasks or clauses, among others [2].

Places can have multiple arcs from and to transitions and

transitions can have multiple arcs from and to places. A

transition can have arcs going back to its input places,

symbolized in figure 1 by a double arrow. A place can hold

one or more tokens, symbolized by one or more dots.

Depending on the interpretation given to places, a token can

represent resources or whether a condition is true or false

[1]. In its basic incarnation, a transition is enabled and can

fire when all the places that are connecting to it hold at least

one token. When the transition fires, it removes (consumes)

a token from all the incoming places and adds (produces)

another token in all the outgoing places.

In the example given in figure 1, T1 has one input place

(P1) and two output places (P1 and P2) and it is enabled

because all of its input places have tokens. In figure 2, T1

has consumed a token from P1 and produced another in P1

and P2. The transition can fire again indefinitely because

P1 will always have a token.

More complex behaviors can be modeled by adding places

and transitions to the diagram. In figure 3 we have a

situation where a F1 car is making a pit stop to change all

of its tires. When the Stop transition fires, the places

representing the tires – front and rear, left and right –

receive a token. From that point on, all the tires are changed

concurrently. The Go transition can only fire when all the

“Tire changed” places that are connected to it hold a token

Figure 2: Result after transition has fired

Figure 1: Simple Petri Net with two places and one

transition

(logical AND). This means that the car can only leave the

pit when all the tires are in place.

Several extensions have been developed over the years in

order to improve the Petri nets' capabilities or to simplify its

design and readability.

One of such extensions is the inhibitor arc. This special

kind of arc enables a transition when no tokens are present

at the input place [1]. It is graphically represented by a line

with a small circle where the arrow would be. In figure 4,

T1 is enabled since P1 has a token and P2, who is

connected to T1 trough an inhibitor arc, is empty.

Sometimes it may also be useful to delete tokens from

places when certain transitions occur. When a stop

condition is reached and you wish to stop processes running

in parallel, for instance. For these cases there is a special

kind of arc call the reset arc, usually represented by a

dashed line [5]. When the transition connected to the arc

fires, the place on the other end is emptied of its tokens.

Another useful extension involving arcs works by

associating weights to them. Weights correspond to the

number of tokens that must be removed or added from or to

a place when a transition fires. The transition cannot fire

while its input places do not have a number of tokens equal

to the weight of the arc that connects them [1]. In the

examples given up to now, we can consider all of the arcs to

have a weight value of 1, since the transitions associated to

them add/remove a single token to/from the corresponding

place.

Some extensions can simplify Petri nets greatly. In figure 7

we are modeling a logical XOR by using two different

transitions. P3 will get a token if T1, T2 or both transitions

are fired.

In figure 8, however, we need only one transition to achieve

the same result. Other transitions of this kind include XOR-

splits (where we can choose from multiple outgoing places)

and mixes of AND and XOR transitions. The notation for

this type of transitions varies among Petri net modeling

software between the diamond in figure 8 and the boxes in

figure 9 [5, 6, 7].

Places can also function as branching points when they

have more than one outgoing arc. In automatic simulation

this transition is usually picked at random, but one can add

guard expressions [8] or different probabilities [5] to

transitions or arcs in order to simulate different behaviors.

Transitions can also be timed (timed Petri nets) and tokens

can have different values and attributes throughout the net

(colored Petri nets) [7].

Hierarchical structuring is a feature shared by many Petri

Net design and simulation software [5, 8]. In order to keep

the diagrams simple while modeling complex systems, we

can divide a complex Petri Net into smaller, hierarchically

related nets and spread them across separate diagrams. This

makes it possible to model a large and complex system

while still being able to explain the way it works in a

general, simpler diagram.

This can be illustrated by taking a look at the pit stop

Figure 3: Pit stop. The car enters the pit, stops,

has its tires changed and leaves.

Figure 8: XOR-join

transition

Figure 9: XOR-join

alternate notation

Figure 7: XOR with

multiple transitions

Figure 5: Net with reset arc.

T1 fires, P3 will be emptied.

Figure 6: Arcs with weights.

When fired, T1 consumes 3

tokens and produces 1

Figure 4: Petri net with

inhibitor arc

example given earlier in figure 3. We can hide the details of

the tire changing process by moving it inside a subnet

construct [5, 7].

This results in the diagram in figure 10. This construct takes

the shape of a transition that aggregates the places and

transitions we had before [7], simplifying both the reading

and understanding of the diagram. Since the elements that

were in figure 3 are still part of the Petri net, we can

simulate the process in the exact the same way as we would

if we didn't use hierarchies.

 CASE STUDY OF PETRI NETS IN GAME DESIGN

We will now illustrate the use of Petri Nets as a modeling

language in game design, the expressiveness of these

diagrams and the ability to simulate the flow of the game

with them, by resorting to a few examples. The diagrams

present in this section are part of a game we are working on.

The game's main objective is to promote an experimental

and systematic research attitude in a simulated environment,

managing knowledge needs and acquisition. The game is

inspired by historical accounts of the methods followed for

navigation and mapmaking of land coasts and maritime

routes during the Portuguese Discoveries. Players play the

role of a ship's captain on a mission to explore and chart an

unknown world. The game's focus is mainly on the player's

ability to evaluate his/hers situation based on how much

he/she knows. Careful preparation, good information

management and negotiation skills are essential to be able

to chart the terrain and progress.

 Example 1: Interaction with natives

Throughout the game, players will encounter situations

where they will need to negotiate with the natives in order

to get supplies or information from them. The way the

natives respond to the player's requests is based on their

past interactions with the player and the way he/she makes

the request. The way envisioned for this process is loosely

based on a system present in an old strategy game called

Centurion: Defender of Rome (developed by Bits of Magic

and published by Electronic Arts in 1990). Every time the

player enters a region of the map he/she doesn't control,

there's an encounter between the player and the region's

leader. Based on a number of factors, including the way the

player talks to the barbarian leader, you will either end up

in a battle, retreating or negotiating an alliance.

In our case, the general interaction process is described by

the Petri Net diagram in figure 11. The player starts by

making a request to the natives, which can be done in one

of three ways: in a pleasant, neutral or unpleasant tone.

Based on the way the player made the request and their

opinion of him/her, the natives then give one of 3 possible

answers, which can also be considered pleasant, neutral or

unpleasant by the player (discount, normal price or

overprice, for instance). The natives' opinion may change

according to their previous thoughts on the player and

his/her "tone". The whole decision process is represented in

the diagram on figure 11, by the Decision subnet transition.

This subnet takes the player's request and the natives'

opinion as inputs and outputs the natives' answer and new

opinion. The diagram could be further simplified by moving

the transition choice for the request into the subnet. Still, we

leave it like this to show the kind of requests the player can

make at the "parent" diagram.

The place "Unpleasant opinion" already has a token,

meaning that the natives' current opinion of the player is

negative. When a request is made, both the token from this

Figure 10: Pit stop with hierarchies.

Figure 11: Request-answer process

place and the player's request go into the Decision subnet.

In this subnet, seen in figure 12, places marked with an "i"

represent external inputs and places marked with an "o"

represent external outputs. These correspond to places in

the parent diagram. Inputs and outputs can only have one

incoming or outgoing arc, so in this case there is an extra

transition and place for each one of them. Transitions

leading to answers fire according to the distribution of

tokens in the request and opinion places. A pleasant answer,

for instance, can be the result of a pleasant or neutral

request and a positive opinion. Both these transitions also

result in a positive opinion.

Since "Unpleasant opinion" already has a token, we can tell

by the outgoing arcs that the answer is going to be

unpleasant no matter what the player says. Still, he can

make the natives change their opinion to neutral by making

a request in a pleasant tone. This is symbolized by the "P

req - U op" transition. It can fire when both "Unpleasant

opinion" and "Pleasant request" have a token. It then goes

and deposits a token in "Unpleasant answer" and in

"Neutral opinion".

This approach can still be extended by adding the

neighboring countries' opinion to the equation. This way, a

bad choice on the player's part can have an impact later on

in the game by influencing the behavior of natives he/she

hasn't even been in contact with. Simulation can be used in

order to show how different kinds of requests and opinions

lead to different results. It can also be used to count the

number of tries the player has to make in order to change

the natives' opinion to a positive one.

 Example 2: Merchant ship

The merchant ship described here is projected as a

computer-controlled unit, even though these diagrams can

also easily describe the decision making process of a human

player. This unit loads cargo from a harbor and takes it to

another friendly harbor, where it unloads and reloads again.

The ship is unarmed and cannot repair itself away from the

harbor, which will affect the decisions it will make

throughout its journeys.

The ship starts empty, inside the harbor. After it loads the

cargo, it's ready to set sail. Sailing can have two possible

outcomes, or in this case, outputs: the ship either gets to a

harbor (be it its destination or its starting point) or it is

destroyed. Since the sailing aspect is the most complex, it

was made into a subnet, in figure 14. Inside this subnet we

have the possible actions from the unit, its location in

respect to the destination, the game elements that can affect

its journey and the decision making process.

To understand what is represented in the Sailing subnet

some additional context is needed. In the game you have

two different regions: coastal and high sea. Ships in high

sea take damage from the waves, but are safe from pirates

and rocks. The sea doesn't damage the ship if it's close to

the coast, but pirates and rocks may appear. This being

said, the transition next to the place "High sea" should

actually be a timed transition in order to simulate this aspect

accordingly. Due to software constraints, though, that

wasn't possible.

Figure 12: Decision subnet

Figure 13: A merchant ship's journey

Taking a closer look at the Sailing subnet, while the ship is

at sea, it will continuously evaluate the distance to its

destination, as well as being in constant alert for pirates or

rocks. It also starts its journey with full energy. If it finds

pirates or rocks, it will enter the decision process. This

process takes the finding, the ship's energy and the distance

to it's destination as inputs. The energy is constantly

monitored and will change along the trip if the ship moves

into the high seas, takes a shot from a pirate or hits a rock.

If energy reaches 0, that means the journey has ended in a

shipwreck. Every time something happens, the energy that

is used as input for the decision process is reset to insure

the decision is made with up-to-date values. When the ship

reaches the harbor area, it is automatically repaired. When

this transition fires, it is important from a simulation point

of view to clear both the distance tokens and the energy

tokens with reset arcs. This way, when the ship returns to

sail, all is back to the original condition.

The energy subnet in figure 15 has three places that

symbolize the amount of energy the ship has. "Maximum

energy" starts with 5 tokens, "medium energy" with 2 and

"minimum energy" with 1. This makes the ship's total

Figure 14: Sailing subnet. Further down the hierarchy there are two other subnets, Energy and Decision.

energy 10 tokens, since an extra token is added to "medium

energy" and "minimum energy" when the transitions

leading to them fire.

Inhibitor arcs are placed in the "suffered damage"

transitions to insure that tokens are removed from the right

place. The middle "suffered damage" transition, for

instance, is there to remove tokens from "medium energy".

That being the case, it's only logical that it can only fire

when "maximum energy” is empty. When these transitions

fire, they will also add a token to their respective output.

Between the max., med. and min., energy places, there's a

transition with two places named "controller". This is here

to insure that the "energy reduced to half" and "energy

reduced to minimum" transitions can only fire once, since

the condition for them to fire is that the previous energy

level is empty. By adding an extra condition, we prevent the

transition from firing indefinitely.

When the ship is being repaired, these places are cleared,

along with the damage and energy ones. Then, a final

transition with outgoing weighted arcs is used to put the

initial number of tokens back into the energy places before

returning to the parent net.

The energy outputs from this subnet are valuable inputs for

the decision making process. For this, like in the previous

case, we have a decision subnet. As stated before, if the

ship finds pirates or rocks, it will enter the decision process.

The Decision subnet outputs the course of action the unit

will take according to its position, its energy and the type of

threat. If the harbor is close, the ship will keep on going no

matter what. This means tokens from other inputs don't

count in this case, so they will be cleared with the help of

reset arcs.

If it is far, however, both the current energy level and the

type of threat have to be taken into account. To simplify the

diagram, we grouped this distance with the current energy

using three other transitions. Being far and with only a few

energy tokens left has the opposite effect of being close to

the harbor, but it also doesn't need to know the type of

threat, in order to decide what to do next. If on the other

hand the unit as a lot or some energy, it might want to

analyze the situation a little further. When the final

transitions are fired, the output of this subnet is taken to the

Figure 15: Energy subnet

parent Sailing net, back into the "At sea" place, enabling its

transitions once again and restarting this cycle.

We could still model and simulate this whole system

without both the decision and energy subnets. These could

be replaced by a simple XOR, giving the designer the

power to choose what to do next. It is interesting, though, to

give some extra detail to models in order to test some

concepts.

Balancing issues can be detected in simulation of this

system. If the journey ends in a shipwreck too many times,

then there can be a problem with the damage or with the

way decisions are made. If there are no shipwrecks, though,

this may mean that the game is too easy.

 ADVANTAGES AND INCONVENIENCES OF
MODELING GAME LOGIC WITH PETRI NETS

Once you know how transitions work, Petri Net diagrams

can become easier to read and to understand. It has a simple

notation, being composed of only circles, bars or boxes and

at most three types of arcs, when compared with UML's

multiple diagram types [21] even if only using some of

them for designing game systems [9]. Text descriptions are

usually very short, and not all transitions/places need names

(e.g., see figure 16).

The use of hierarchies of diagrams also enables them to

represent complex systems in a simpler way while

preserving or reinforcing semantics of each diagram. We

can get the big picture of the game by looking at one or two

diagrams, and then move down the hierarchy to understand

the way specific things work.

The Petri Nets' ability to model system with concurrent

operations and conflicts is well documented [1, 2, 3, 7].

This can be of great help for game designers trying to

model real-time action and strategy games. In figure 14, for

instance, we are modeling distance evaluation (albeit in a

simple way), the ship's energy and what may affect it, its

journey and its decision making process all at the same

time. In multiplayer online games the complexity imposed

by concurrent game events can pose even more complex

modeling scenarios.

Also, being a mathematically well-founded structure, Petri

Nets can be verified, validated and simulated with a number

of analysis methods and tools [1, 7]. The diagrams that

were made to model the game behavior can also be used to

check for issues in the game design. Balancing the flow of a

game is a task that is usually done only after some form of

game prototyping enables playtesting [16]. Petri Net

modeling gives game designers a way of finding problems

before the game is in actual development. This can be

especially important for simulating multiplayer or

heterogeneous game designs whose dynamic properties are

typically more difficult to foresee.

Like in most graphical tools, growing complexity can

become an issue. Even with hierarchies, some diagrams can

grow to become very complex. In figure 12, for instance,

the number of lines crossing paths hinders readability, even

if the diagram is still fairly simple. Just by adding the

neighbors' opinion to the equation, the increased complexity

would likely make the diagram hard to read. Moving some

sections to subnets can simplify the picture, but it makes it

harder to view the whole system, unless each diagram

retains a clear semantic role in the whole model

In figure 15 it is implied that cannon shots, rocks and waves

do the exact same damage to the ship. From a

representation point of view one could argue it doesn't

really matter, but in simulation it can lead to awkward

results. One could try to use different transitions with

weighted arcs to represent different levels of damage.

However, if the weight of the arc is bigger than the number

of tokens present, the transition would never fire, leaving

the ship undamaged. This is a limitation of using simple

Petri Nets models, which can be partly overcome with the

adoption of an extension for colored tokens. This extension

provides tokens with variable attributes and transitions that

can choose the type of tokens to remove/add and change

these attributes. This means that the diagram in figure 15,

for example, could be simplified and model different types

of damage by adding variables and conditions to tokens and

transitions respectively.

Figure 16: Decision subnet.

This outputs the course of action the unit will take.

 CONCLUSIONS

In this paper we discussed the applicability of Petri Nets to

the modeling of game systems and game flow. This is an

area where Petri Nets can be of value, especially if we are

concerned with modeling game scenarios with concurrency.

As a graphical tool, we concluded that Petri Nets can be

expressive and easy to understand. Their limited number of

representation elements contrast with the large array of

diagrams and concepts in other notations in popular

modeling languages such as UML, making them easier to

learn, although limited to describing system behavior. Petri

nets can be useful for modeling decision making processes

that depend of several preconditions. Simple agent

behaviors as well as player's choices can be modeled and

simulated. This is enhanced by a Petri net's capability of

modeling concurrent operations. Petri Nets have formal

semantics that enable them to be verified and simulated.

This aspect can prove to be very useful for game designers,

since they can evaluate some play time characteristics while

still in the design phase. We are still evaluating if the

adoption of colored Petri Nets can help manage the needs

for representing more complex situations retaining economy

of representation.

 REFERENCES

1. Zou, M., and Zurawski, R. Introduction to

Petri Nets in Flexible and Agile Automation, Petri

Nets in Flexible and Agile Automation. Kluwer

Academic Publishers, 1995, 1-42.

2. Murata, T. Petri Nets: Properties, Analysis

And Applications. Proceedings of the IEEE,

Vol.77, No.4, April 1989, 541-580.

3. Petri, C., and Reisig, W. Petri net

http://www.scholarpedia.org/article/Petri_net

(retrieved on 12/02/09).

4. Petri Nets World: Petri Nets Tool Database

Quick Overview. http://www. informatik.uni-

hamburg.de/TGI/PetriNets/tools /quick.html

(retrieved on 15/02/09).

5. Yasper User Guide. http://www.yasper.org/

(retrieved on 09/02/09).

6. Workflow Petri Net Designer. http://

woped.ba-karlsruhe.de/woped/WorkflowNets

(retrieved on 12/02/09).

7. van der Aalst, W. The Application of Petri Nets

to Workflow Management. The Journal of Circuits,

Systems and Computers, Vol. 8, No. 1, 1998, 21-

66.

8. CPN Tools, Computer Tool for Coloured Petri

Nets. http://www.daimi.au.dk/CPNTools/

(retrieved on 09/02/09).

9. Bethke, E. Game Development and

Production. Wordware Publishing, 2003.

10. Crawford, C. The Art of Computer Game

Design. McGraw-Hill/Osborne Media, 1984

11. Lian, J., Hu, Z. and Shatz, S. Simulation-Based

Analysis of UML Statechart Diagrams: Methods

and Case Studies. The Software Quality Journal

(SQJ), Vol. 16, No. 1, March 2008, 45-78.

12. Lewinski, J. S. Developer's Guide to Computer

Game Design. Wordware Publishing, 1999.

13. Rollings, A., and Adams, E. Andrew Rollings

and Ernest Adams on Game Design. New Riders,

2003.

14. Wendt, S. Modified Petri Nets as Flowcharts

for Recursive Programs. Software - Practice and

Experience, Vol. 10, No. 11, 1980, 935-942.

15. Horrocks, I. Constructing the User Interface

with Statecharts. Addison-Wesley Professional,

1999.

16. Salen, K., and Zimmerman, E. Rules of Play:

Game Design Fundamentals. MIT Press, 2003.

17. Aredo, D. B. A Framework for Semantics of

UML Sequence Diagrams in PVS. Journal of

Universal Computer Science, Vol. 8, No. 7, 2002,

674-697

18. Schattkowsky, T., and Forster, A. On the

Pitfalls of UML 2 Activity Modeling. IEEE

Computer Society, ICSE Proceedings of the

International Workshop on Modeling in Software

Engineering, page 8, 2007.

19. Crawford, C. The Art of Interactive Design: A

Euphonious and Illuminating Guide to Building

Successful Software. No Starch Press, 2002.

20. Szienk, M. Formal Semantics and Reasoning

about UML Class Diagram. IEEE Computer

Society, DEPCOS-RELCOMEX, Proceedings of

the International Conference on Dependability of

Computer Systems, 2006, 51 – 59.

21. Unified Modeling Language.

http://en.wikipedia.org/wiki/Unified_Modeling_La

nguage (retrieved on 17/02/09).

22. Brom, C., and Abonyi, A. Petri-Nets for Game

Plot. Proceedings of AISB, Vol. 3. 6?13.

23. Balas, D., Brom, C., Abonyi, A., and Gemrot,

J. Hierarchical Petri Nets for Story Plots Featuring

Virtual Humans. Proceedings of Artificial

Intelligence and Interactive Digital Entertainment

2008, pages 2-9.

24. Brom, C., Sisler, V. and Holan, T. Story

Manager in 'Europe 2045' Uses Petri Nets.

International Conference on Virtual Storytelling

2007, pages 38-50.

