Defining Operational Logics

Michael M ateas and Noah Wardrip-Fruin
Expressive Intelligence Studio
Department of Computer Science
University of California, Santa Cruz
1156 High St, MS:SOE3
Santa Cruz, CA 95064 USA
michaelm, nwf @soe.ucsc.edu

ABSTRACT

Much analysis of games focuses, understandablythein
mechanics and the
Similarly, many genres of games are understooleatevel
of mechanics. But there is also the persistentesémat a
deeper level of analysis would be useful, and aberof

proposals have been made that attempt to look tbwaar

level that undergirds mechanics. This paper focusesa
particular approach of this sort—operational logidgst

and finallyplatform.In the context of games, the first three
levels are the traditional purview of game studisgh a

resulting audience experiencesiocus, respectively, on the reception of the atifim the

social and cultural field; the game interface alne visual
and auditory representational strategies; and thehanics,
rules, formal, and simulational elements of ganié® last
two levels, code and platform, have been far |ésdied,
with the code level focusing on deep readings dfnwsoe
structures, and platform studies focusing on degaings

proposed by Noah Wardrip-Fruin (2005) and sincenthe of the hardware and system abstractions that lader!

discussed by authors such as Michael Mateas (2806)
lan Bogost (2007). Operational logics connect funelatal
abstract operations, which determine the stateuéool of a
system, with how they are understood at a humaei.léw
this paper we expand on the concept of operatilmggds,

offering a more detailed and rigorous discussioanth

provided in earlier accounts, setting the stage rfare
effective future use of logics as an analytical l.tdo
particular, we clarify that an operational logicfides an
authoring (representational) strategy, supportecifistract
processes or lower-level logics, for specifying biedaviors

a system must exhibit in order to be understood as

representing a specified domain to a specifiedemati. We

provide detailed discussion of graphical and reseur
management logics, as well as explaining problerite w

certain earlier expansions of the term (e.g., lloHandling
and interactive fiction’s riddles).

Author Keywords
operational logics, mechanics, code studies, yretations,
software studies

INTRODUCTION

Games can be studied at many levels of abstraciuh,n
relationship to many social, cultural, psychologicaedia-
theoretic, and formal phenomena. This multivalettire of
games contributes to the methodological pluraligmnsin

software. In this paper we preseyerational logicsas a
unit of analysis centered at the code and platiesrals, but
that connects technical implementation strategigth w
authorial and audience meanings. Operational lagjieghe
fundamental abstract operations—with effective
interpretations available to both authors and pkydhat
determine the state evolution of the system anceumite
the gameplay. As such they provide “deep cored” ivad
together issues ranging from the platform to réoepevel
for specific representational domains.

Wardrip-Fruin introduced the notion of operatiohadics
(though did not name them as such until his 2006
dissertation [14]) in a 2005 paper exploring théfedéent
ways in which interactive texts can be maudigyable[13].
To briefly recapitulate the argument of that papeardrip-
Fruin argues that, rather than focusing on the tqpreof
which interactive experiences are or are not garteis,
more fruitful to focus on the analytic category tife
playable, and to ask of various interactive expm®s “in
what way is this experience playable?” He thenothiices
the notion of operational logics as a way of analyhow a
given interactive experience structures the spdcplay,
particularly focusing on two families of operatibhagics:
graphical logics and textual logics. Wardrip-Frdurther
developed the idea of operational logics in hiselitation
[14] and in Expressive Processingl5], though not

the game studies community. Montfort and Bogost Providing a wholly consistent account across thesee

introduce a five level model for the analysis ofjitdl
artifacts as a framework for organizing this plityalof

treatments. Other authors, such as Mateas [7] agb®
[4], have further expanded on the notion of opersti

methods and viewpoints [10]. The levels range from l0gics, but generally as a niche discussion inaretext of
reception/operatiorthroughinterface, form/function, code & larger project; even Wardrip-Fruin, in his thdifferent

Breaking New Ground: Innovation in Games, Play, Practiceand Theory. Proceedings of DiGRA 2009

© 2009 Authors & Digital Games Research AssociaiDIGRA). Personal and educational classroom usthisf paper is allowed,

commercial use requires specific permission froengtithor.

accounts, always introduces operational logics e t
context of making a larger argument. In this paperseek
to define operational logics as a first-class whianalysis,
offering a more detailed and rigorous discussioanth
provided in earlier accounts. We discuss graphead
resource management logics in some detail, outhne
number of limit cases for the concept of operatidogics,
and then provide and expand a full definition of th
concept. Finally, we discuss how this work sets dtege
for the use of operational logics in connectinguanber of
issues in game studies to the emerging area ofvait
studies, offering a powerful combination of teclahic
grounding with authorial and audience concerns.

OPERATIONAL LOGICS

In this section we introduce operational logics hwin
informal discussion of graphical and resource marmamt
logics. The next section provides a more formalnitéin
of operational logics.

Graphical Logics

To introduce graphical logics, consider two early
videogames, Spacewar! (1962) and Pong (1972). In
Spacewar! two players control the flight of virtual
spacecraft. Player controls are clockwise
counterclockwise rotation, thrust, fire and hypesp
(which jumps the ship to a random location on styee
Each player tries to shoot the other while avoidietng hit
by enemy fire or crashing into the enemy ship, &hil
navigating within the gravitational field of a star the
center of the screen. A ship is destroyed wherolifdes
with a bullet, the other ship, or the star in teater.

In Pong a simple table tennis simulator, two players muint
paddles that are able to move vertically alonggbal lines
at the left and right edges of the screen. A sincpl@puter
controlled opponent can be substituted for one h# t
players. The players volley a ball back and fosthen
either player misses (the ball fails to collide twithe
paddle), the other player scores. The angle attwitie ball
reflects from the paddle on collision depends ormstthe
ball hits the paddle, reflecting at sharper antpegards the
ends of the paddle.

Though the fictional worlds of space warfare anblda
tennis are quite distinct from each other, anditfeegames
would typically be classified as belonging to distigame
genres (the shoot-em-up and sports
respectively), there are strong similarities betwéleem.
Both games represent timeovementof simulated objects
(space ships, projectiles, balls, paddles) by euortist
erasing and redrawing collections of pixels (or, the
original Spacewar!,collections of vectors) on the screen.
Major gameplay events occur when two virtual olgect
collide, naively, when pixels/vectors belonging to one
virtual object are drawn at the same screen locati®
pixels/vectors belonging to another virtual obje@he

simulated movement of objects is influenced by an

underlyingphysicssimulation, giving spaceships inertia and

and

simulation

making them subject to gravity, or changing thelarmg a
ball's trajectory as a function of where it hitethaddle (the
physics simulation does not have to obey the pbysiour
world). These similarities constituteperational logics
which we, as discussed above, define as fundamental
abstract operations—uwith effective interpretatianailable

to both authors and players—that determine thee stat
evolution of the system and underwrite the gameBaygh
Spacewar!and Pong exhibit canonical graphical logics,
specifically logics of movement, collision detecti@nd
physics. There’s an additional logic operatingpacewar!
navigation. Navigation involves player-controlled
(simulated) movement of a (virtual) object in aresgnted
space, in this case the movement of space shipstivo-
dimensional field. Pong can be said to make use of
navigation logic, though it is the degenerate cade
navigation along a line segment.

Graphical logics, which underwrite the simulatidrspaces
and objects within spaces, are the most commorcdogi
employed in videogames, found at the heart of ¢hiry
from the playfulMario games to the grittygrand Theft
Auto franchise. Consider the logic of collision detenti
Collision detection is operating when Pac-Man eat®t or
power pill, or is touched by a ghost; it's opergtimhen the
player is unable to move through wallsDwom picks up
health packs, hits demons with weapons, and isbyit
demon attacks; it's operating when the player saketri
picks up or bounces off an object Katamari Damacy
Similar examples can be enumerated for movement,
navigation, and physics, across the vast majorify o
contemporary and historical games.

Resource Management Logics

Before discussing some general properties of ojpeiat
logics, we will examine one more family of logias this
section. Consider two other early computer-basetega
Hamurabiand Oregon Trail Richard Merrill wrote a land
management game callethe Sumer Gamén 1969 in
FOCAL for the PDP-8. David Ahl ported it to BASI®ff
the PDP-8, and later published an expanded verdidhe
program, renamecHamurabj in his best-selling book
BASIC Computer Gamdg]. It is in this version that the
game became well-known among personal computer
hobbyists, who would type in the program to plag ame
(and, because the game was distributed as souke co
often tinker with the program to explore variant).
Hamurabi the player takes the role of “Hamurabi,” the
ancient king of “Sumeria.”

In this turn-based, text-based game, the playeresak
series of decisions about land management and the

! Hamurabiis presumably a shortening of Hammurabi to fit

in an eight-character file name limit. The gameites
players to “Try your hand at governing ancient Sraie
(rather than Sumer).

allocation of grain. During each of 10 rounds, each
representing one year, the player decides how raangs
of land to buy or sell, how many bushels of graifiged the
people (20 per person required to avoid starvingpae),
and how many acres of land to plant (one bushejrain

bullets to try to hit game to supplement food), the
opportunity to rest (costs days, and therefore fdd can
improve the health of party members and rest ozgen) at
the occasional fort, opportunities to purchase seihhe
player must manage tradeoffs between the healtthef

plants 2 acre$) At each step, the game state consists of theparty members, consumption of food, and number itgsm

population, the number of acres owned, the number o
bushels of grain owned, and the current price ofl lan
bushels per acre.

As one would expect, feedback loops and tradeofist e
between the various player choices. For example,cgn
only plant as many acres as ten times your popmggach
person can farm 10 acres), and your population gras/
function of the number of acres owned and the artotin
stored grain—though more acres and grain are redjuo
grow the population by the same absolute valuehas
population gets bigger. Further, random events steke,
such as plagues that eliminate half your populagiod rats
eating your stored grain. This introduces furthadéoffs
into the system. For example, the amount of staedn
destroyed if a rat infestation strikes increasesh whe
amount of total grain stored. This encourages thgep to
minimize the amount of stored grain in order to imiae
exposure to this risk, yet the player must alsoimepe the
amount of stored grain in order to grow their pagioh.
Finally, there is random fluctuation in the yielérpacre
(number of bushels produced per acre planted) dsas/@n
the price per acre, introducing an element of uagey
and encouraging the player to try strategies sscbuging
land low and selling high, which can become neggsisa
low-yield years in order to avoid mass starvation.

—

In Oregon Trailthe player guides a wagon that is traversing
the Oregon Trail from Independence Missouri to ©reg
Willamette Valley in 1848. The player’s goal isreach the
end of the trail while minimizing the number of par
members lost along the wa@regon Trailwas developed
by Don Rawitsch, Bill Heinemann and Paul Dillenkartp
teach school children about the realities of pionkfe
along the Oregon Trail in the mid i@entury. The game
exists in several versions, with the original meanie
versions developed in 1971 and released in 197d ttae
Apple Il versions that most players are familiathafirst
released in 1980 with an updated version in 1985.

At the beginning of the game, players are givendget for
equipping their wagon. Purchase decisions inclwete ef
clothes (influences health as a function of weatheagon
spare parts (wagons break down), food, bullets keansed
to hunt as another way of getting food), and soQuce the
trip is underway, the player is able to adjust gaze at
which the wagon moves, rate of consumption of food,
whether to trade (during trading, the player i®dtl swaps
for items in her inventory), the opportunity to hujpise

2 The simulation constants reported here are basdézhwid
Ahl’s 1973 BASIC version for the PDP.

traversed per day. Additionally, the player mushtead
with a variety of random events, such as party nmamb
becoming sick, thieves stealing items, wagon gasking
down, and so forth.

Though the fictional worlds of land managementriciant
Sumer and 19 century pioneer life along the Oregon Trail
are quite distinct, and the two games would typycake
classified as belonging to distinct game genres {¥lcoon
game and the simulation game respectively), these a
strong similarities between them. Both games remtes
acquiring, using, and transforming resourcgsch as food
and money by representing the amount of each resour
currently possessed by the player as a numberieifming
sources that produce resources, sinks that consume
resources, and transformers that convert one resdanto
another. Random eventsvithin the fictional world can
consume or produce resources, or change rate ots$ta
production, consumption, and transformation;
probability of a random event occurring is modudaby the
amount of resources possessed and/or by the cuatestof
production, consumption, and transformatioResource
allocation involves the player selecting among different
sources, sinks, or transformations to apply to edéfit
resources, selecting either absolute values os.rateese
similarities constitute resource management logics.
Collectively, these logics provide the fundamerthstract
operations and effective interpretations for corapanal
representations of resource acquisition and spgndin

the

Resource management logics, while not as ubiquitous
games as graphical logics, are still found at tearthof
many videogames, including turn-based and real-time
strategy games, tycoon games, city-management ganges
god games.

Observations

Given these two different families of operationagjics as
examples, we can now suggest some general prapérie
characterize operational logics:

e Operational logics are more general, and more
fundamental, than game rules or mecharizxomand
Super Mario Brothershave very different rules, but
both make heavy use of graphical logics. The gighi
logics provide the more fundamental constraints and
affordances on top of which rules are defined.

< Operational logics provide strategies of computetio
representation. Graphical logics are concerned with
representing movement, virtual touch, the effedts o
physics, and so forth. Resource management logics a
concerned with representing finite resources, nesou

production and consumption, resource tradeoffs,sand
forth. As representations, operational logics ofgefar
both authors and audiences, simultaneously prayidin

representational tropes for authors and actionable

representations for players. An algorithm or cotecre
implementation of an algorithm is not enough toabe

operational logic, as the code on its own does not

specify a representational strategy.

Operational logics are fundamentally computational.
They provide specific strategies for procedural
representation. Consider the example of repreggntin

logics for getting handles to filestreams and
reading or writing byte data. We might call the
former group of procedural tropéeterface logics,
and the lateimput/output (I/0) logics

Here we see a couple of interesting moves beingemad
First, operational logic has slid into the more ey@h term
procedural trope any commonly employed computational
pattern. Second, the user interface examples powad
useful reminder that games are not the only contiouiz
media form in which an author expresses intentutino
providing operational interpretive affordances to a

moral decision making, as is found in games such asaudience. Thus, we can expect operational logicheto

Star Wars: Knights of the Old Republar Fable.
Simply identifying the game design trope of “moral
decision making”, or even, more specifically, “offe
players choices between good and evil options,”
insufficient to have identified an operational login
order to, in this case, develop logics of moralisien
making, the logics would have to provide stratedigs
mapping representations of moral choices and thei
effects into a computational representation; anrgpta

of such a logic is the moral alignment logic of
representing moral status as a point in a one aemo
dimensional space, with different player actions
moving the point around within the “morality spdce.

In the next section, we provide a more formal dgéin of
operational logics that further unpacks these g#ner
properties.

FORMALIZING OPERATIONAL LOGICS

Since Wardrip-Fruin’s original description of opeoaal
logics [13], a number of authors have built on #toscept,
including both Wardrip-Fruin [14, 15] and Bogost].[4
While these authors usefully deploy operationalidegn
their analyses, they also provide examples of bdiat
muddy the concept and risk diluting its analytiomeo. In
this section we examine a couple of problematicd(an
useful) examples of operational logics to motividte need
for a more formal treatment, then, extending tleatment
presented in Wardrip-Fruin [14], provide a defimiti that
sharpens its use as an analytic tool.

Overly Broad Uses

Bogost, after introducing the graphical and textlojic
examples provided in Wardrip-Fruin’s dissertatidd][in

the context of playable media, goes on to provide
additional, general computing examples [4]:

Outside of videogames, procedural tropes often
take the form of common models of user

interaction. Elements of a graphical user interface
could be understood as procedural tropes, for
example, the scrollbar or push-button. These
elements facilitate a wide range of user interadtio

in a variety of content domains. Operational logics
for opening and saving files are also reasonable
candidates; these tropes encapsulate lower-level

r

useful wherever we find computational media.

However, the file system examples become problemati

iSYes, file systems are an abstraction, one thatasigled by

system programmers, for use by application prograram
But every computational system is a dizzying toveér
abstractions, with processes defined at one level
underwriting the abstraction defined at the nextleYet
abstraction is not a unitary phenomenon—it ratheolves
distinct phenomena such as functional abstractiod a
language abstraction. If operational logic is stietl to
account for the ubiquitous and multi-faceted phesioom

of abstraction, it risks losing any analytic anglexatory
power.

Further, moving outside of computer science inte th
interdiscipline of software studies, the shift from
operational logic to the more general category of
“procedural trope” loses analytic power to accodot
specific processes of meaning making. One of thrrale
questions of software studies is “How does comjnrat
mean?” There is no single answer to this questmt,
rather many different answers to how software means
different contexts, and thus many different typek o
“procedural tropes.” In order for operational loga@ be a
useful analytic category, it needs to describeexifip kind

of “procedural trope,” a specific mechanism of megn

Now consider the following passage from Wardripifru
[14]. In this passage, he has just introduced ¢éxeliased
interactive fiction (IF) of Infocom, and is desdrig the

logics operating in these works.

These textual games used a different operational
vocabulary from video games, supported by
different logics, including arguably-literary logic
that operate at relatively abstract levels (which
others have discussed in terms of the literaryleidd
(Montfort, 2003) and the performative quest
(Aarseth, 2004)). These more abstract logics had to
be supported by lower-level ones, including those
for textual parsing and reply, world simulationdan
progress tracking.

Here a different problematic emerges in identifying
operational logics in the reference to the literaigdle.
Montfort argues that the pleasures of the puzkke-li

situations presented to players of IF can be uthofdsin
reference to the figure of the literary riddle [8hat is, the
same kinds of conceptual shifts required of reattesolve
a literary riddle (or understand a presented smh)tiare
required of players of IF. In this quote, the rilike
operation of IF is identified as an abstract operat logic.
But in what sense is there computational suppartthics
riddle-like nature?

Within interactive fiction there are operationalgics
supporting navigation, object manipulation, and eoth
aspects of a simulated world. Whether a particpiace of
interactive fiction requires the player to make the
conceptual shifts associated with the riddle, hawevs
“merely” an issue of authorial skill in deployinchet
operational logics in combination with good writing all
developed authoring approaches for computationaliane
fall under the sign of operational logic, then ttencept
devolves, losing explanatory power. Putting it @lyd if
the filesystem abstractions fail at being operatidngics
because they are code without meaning (they areugdsd
from author and audience), the IF riddle fails aing an
operational logic because it is meaning withoutecod

An Expanded Definition

We are now ready to state a more formal definitadn
operational logic that captures the intuitive pmijes of

logics described in the previous section, and cakem
principled distinctions to avoid the problems désemt

above:

An operational logic defines an authoring
(representational) strategy, supported by abstract
processes or lower-level logics, for specifying the
behaviors a system must exhibit in order to be
understood as representing a specified domain to a
specified audience.

We unpack the elements of this definition belovartiig
with abstract process. An abstract process is eifggaion

for how a process operates. An abstract process fo

determining whether two visual representationsl¢ctibns

of pixels) overlap is to declare an overlap hasuoed if
any of the pixels of the two objects occupy the esam
location. An abstract process for randomly addimg o
subtracting an amount from a numeric value is tfindea
set of positive and negative numbers and
deterministically select one of these numbers t tadthe
value (we will make use of this abstract processain
discussion of the random event resource managelogint
below). Almost any abstract process could be dchraet
through (“implemented in") human effort as well as
automatic computation, but for many contemporarykso
of digital media the calculations would be intrdod¢ato
manually carry out. Abstract processes describe sét
algorithms whose behavior meets the abstract spatbiin.

Implemented processes are concrete realizatioabsifact
processes. Some implementations are through huffat e

non-

others through automatic computation. implementatio
make different tradeoffs in the amount of memond an
processing time they require, which can determihetter
work of a particular sort is possible with the dahle
resources (e.g., certain approaches for repregentin
statistical models balloon much more quickly thaheos)
and fast enough to be responsive (e.g., fast 3deramy
enables fluid interactive navigation of virtual spa
Implementation specifics may also alter the results
processes in ways that can appear profoundly diffeon
the surface (e.g., using a piece of data as a nuddisl own
statistics may meet the abstract definition of atistical
technique while producing very different resultsnfr an
external model). An implemented process is a sjecif
algorithm that meets the specifications of an auostr
process.

An operational logic is not just a naked processt b
provides a strategy for mapping a desired reprasentl
effect onto the process; that is, it defines a ahiuthorial
and interpretive affordance [6]. Interpretive affances
support the interpretations an audience makes athaut
operations of a computational system, conditionthg
meanings negotiated between author and audience.
Interpretive affordances provide resources bottcfeating

a mental model of the operation of the system, and
additionally, in the case of an interactive systerfts
supporting intentions for action. The authorialoadfances
of a computational system are the “hooks” that dixstem
architecture (processes and data) provides foruétmoato
inscribe their authorial intention in the machimgfferent
architectures provide different relationships beatwe
authorial control and the combinatorial possitabti of
computation. Operational logics are the units fravide
effective authorial affordances for specific regmstional
tasks. To define an effective authorial affordanee,first
need to understand the double meanings that
computational systems patrticipate in.

all

F_very computational system can be read as a stati@nd
executed as a process. As a static text, a conmaht
system is a description of an implemented procébe
process may be described using code in a particular
programming language, a particular configuration of
hardware elements, or precise natural languageigtsn.

The execution of a process description is purely
mechanical, that is, it requires no processes ahdm
meaning making. As a pre-interpreted machine,
executing process consists entirely of complex @laflews
mediating changes in abstract state.

an

The executing process gains a layer of human meganin
through interpretations of outputs and of the retethip
between inputs and outputs. The static, textuatrg@son
of the process simultaneously specifies an unintéed,
meaningless machine (the executing process),

represents properties of the (desired) human irg&tions
of potential executions. This raises a conundruaw kan
process descriptions be simultaneously amenabléh¢o

and

uninterpreted manipulations of computational system Fortunately for the designers of videogames, this
(execution) and to serving as signs for human stdffeThe representation is a so broadly understood converttiat
answer is that the literal process description (tbede the specified audience is in some sense “everybdoye
machine”) must be coupled with a collection of dnuital can make the argument that this representatiomalertion
strategies for talking about the static processcrij@#on is supported by features of the human vision syst&ut
and its executions (the “rhetorical machine”). Esample, operational logics can partake of interpretive @mions

the

rhetorical machine associated with the procesghat are understood by narrow audiences. Consider t

description of a planner supports the use of laggusuch random event resource management logic.

as “goal,
to specific formal entities within the process, d@andmake

use of the systems of meaning these words have when
applied to human beings. In fact, these rhetostalctures

are also important to the initial construction bé tplanner
itself, by its author(s).

lan,” and “knowledge” to simultaneoyskfer . . .
b g Y The abstract process is “given a collection of one

or more labeled numeric values, define a set of
positive and negative numbers each associated
with a label and a sensory representation that will
make use of other operational logics, define a
probability distribution over these numbers, and

Now we can define amffective authorial affordancea non-deterministically select a number according to
computational media system exhibits effective axiého the distribution, displaying its associated
affordances for a specific representational taslkerwthe representation and adding it to the number
internal structures and processes made availabléhey associated with its label.”

system are coupled with rhetorical strategies ghel the

author is able to represent desired interpretiVer@énces
in the static process description, and, when execuhe
process does indeed provide the desired interpretiv

The domain is the representation of random events
within a fictional world that impact the amount of
managed resources.

affordances for the audiencén Operational |OgiC is . The representationa| strategy says “in order to
precisely such a packaging of a rhetorical strateggn represent randomly occurring fictional events
authoring (representational) strategyth a process- impacting managed resources, associate each
“supported by abstract processes or lower-levet#ig-in resource with a numeric value, associate ‘good’
order to provide an effective authorial affordance— fictional events with positive numbers, ‘bad’
supporting the specification of “the behaviors atem fictional events with negative numbers, create a
must exhibit in order to be understood as repréesgra sensory representation of the fictional event, and
specified domain to a specified audience.” define a probability of the event occurring,
generally associating smaller probabilities with
Examples Revisited _ _ larger positive and negative resource changes.”
Now we will look again at a couple of our previous
examples of operational logics in light of this mdormal . On the audience interpretive side, this
definition. Consider the movement graphical logic. representation is entirely conventional for players

o) of simulation games (and thus most videogame
The abstract process is “continuously redraw players).

collections of pixels, erasing the previous drawing) _
between each redraW, while app|y|ng a Sma”’ It is pOSSIble to now Clearly see how both the ﬁi@tem

identical offset to the screen location at whichhea and riddle examples introduced at the beginningthid
pixel is drawn.” section fail to qualify as operational logics. Rbie file

o) system operations, while they provide abstractiesesable
The domain is the representation on the screen oby programmers, abstractions that in fact mightibed as
the movement of physical objects. part of a process description, they do not parigpn the
The representational strategy is “in order to computational media ecosystem of authorial _intemtio
represent on the screen a physical object movingmec_llated thrqugh a computational representationarto
along a trajectory, make the collection of pixets b audience. While one can talk about meaning in treext
an image of the object, specify a sequence ofof file systems, it is not this kind of meaning rirak On

offsets along the desired trajectory, using Iargerthe other hand, while the trope of the riddle istajely a
offsets to represent faster movement.” representation an author can intend, there is retraat

process nor representational strategy supportiagittdle.
The specified audience is an audience that iswhen the trope of the riddle successfully operatean IF,
primed to interpret the continuous redrawing of an it is because the author has made idiomatic useafy
image as the movement of an object. While this logics that are conventional in IF, but these idioane not
interpretation can be scaffolded, like any yet codified to the point of providing effective tharial
representational system it is ultimately affordances.
conventional.

In the two examples above, pulling apart the abstra
process from the representational strategy resuited
awkward, and perhaps overly abstruse-sounding,
descriptions of the processes and strategies. This
precisely because an operational logic actuallydbin
process and strategy into a unified whole; thetegsa
provides the language for talking about the pracédsen
you pull the two halves apart, it reveals the higdener
complexity of the union. Especially for logics thate as
deeply conventional in computational media productis
graphical and resource management logics, it celhafe if
the process is intrinsically about the represemati
domain. Thus “move objects by continuously redrawin
them” and “random events add and subtract from igesha
resources” can feel like unproblematic descripticofs
processes. But processes, on their own, have minsiat
representational power (and can thus be quitecdiffito
talk about in the abstract). A representationahtsgyy
functions precisely because it provides a way liirig and
thinking about a process. But the original estaitient of
this mapping between process and rhetoric takek.wor
Fundamental innovation in computational media ings|
doing the work of establishing new strategies fapping
representational effects onto (potentially new)cpsses.

DISCUSSION

In this paper we have gone to some length to gieenples
of operational logics (and examples that aren’tidey
define the term, and expand on the definition. \Wethds
not from a love of terminology, but because weéwdithat
a relatively precise notion of operational logicakas it
possible to discuss important issues with connestio
“under the hood” of games. In particular, we bediev
operational logics provide one of the most potdgtia
fruitful ways to bring game studies together witiftware
studies. We sketch a few directions for possiblekvad this
sort here.

Operational logics provide a useful analytical tdok
understanding constraints on game mechanics and gal
rules, two of the central topics of game studié&hie
these topics are not always clearly distinguisiSichrt [12]
and others define mechanics in relation to plageria
actions, while rules are more general.) Discusgiogame
design and game scholarship often identifies machamd
rules as central sites for innovation. But the spaf
possible innovation is not free—it is fundamentally
constrained by the operational logics availableisTis
because operational logics deeply underwrite meckan
and rules.

Given this, considering operational logics canifyavhat
differentiates certain types of alternative gameation.
Wardrip-Fruin et al'sRegime Chang€2004) is driven by
the serial-ordering logic of Markov chains, whiok &rgues

is an appropriate logic for textual play. Matead &mdrew
Stern's Fagade (2005) required the development of new
interpersonal logics that could support structsesh as its

“affinity game.” Arguably, the definition and dewgment

of new types of logics presents an important adttive to
creating games, commercially or otherwise, thamprily
depend on longstanding spatial and resource mareagem
logics. In undertaking such expansions, some napgess
logics may already have formalized abstract and
implemented processes (further work in textualdsgnay
draw on computational linguistics) while others meguire
novel computational models (e.g., to broaden irgespnal
logics to include friendship or humor).

This is not to say that interesting innovation tanvolve
working within established logics. It is certairggssible to
define interesting new kinds of mechanics and rolesop
of existing logics. In fact, such work can argualdgd to
the production of new logics. Consideassageg(2007) by
Jason Roherer. In this game graphical logics aed as the
basis of spatial mechanics associated with metapdtoout
life. For example, collision detection is used t&tetmine
whether the character's journey will take place hw
partner or alone. This isn't just part of the factal world—
solo characters can explore parts of the world toatples
can't. As time passes, the player character ineljitgrows
old and dies. Nick Montfort argues that iRassage
choosing to do things like explore the world, pegda
searching for hidden treasure, become as much dilmout
one lives one’s life as about spatial exploration game
accomplishment [9]. One can imagine such currently-
unusual uses of graphical logics eventually becgmiell-
understood, to the point that the underlying alostra
processes become recognized as participating inkimds
of operational logics: both the current graphiqsitsl
logics and another in which the shifting positio o
elements on the screen is actually understoodeam#king
of non-spatial life decisions. This seems unlikalythe
specific case oPassagebut it explains part of what seems
unusual and full of potential about the work.

On a different note, there is a non-obvious issité the

mfact that operational logics are defined in terrhsilwstract

rather than implemented processes. It raises thetespthat
bogus operational logics can be defined which ase n
actually underwritten by implementable computationa
processes. However, in order to qualify as an abistr
process, there must be an implemented processnbets
the specification of the abstract process. We ataliowed

to cheat by defining an operational logic aroundatic”
abstract processes such as “generate the same &fnds
emotional responses to interpersonal interactiohat t
people do.” Unless an operational logic has actuadien
demonstrated toperateby creating a computational media
artifact that achieves the claimed representatiafféct
using the claimed process and a strategy, themesrut
exist. Once demonstrated, operational logics supptavel

of analysis that is safely computational (no chegti
without having to drop to the level of the codenihich the
processes are implemented. This differentiategtipeoach
from one such as Mark Marino's “Critical Code Sadi

[5], eliminating the need to acquire (rarely aviai¢ég source
code access. On the other hand, operational lagesnore
specific to computational systems than concept$ ag
Bogost’s of the “unit operation,” which createsoaridation
for “any medium—poetic, literary, cinematic, o
computational” to be “read as a configurative systan
arrangement of discrete, interlocking units of essive

1.

meaning” [3]. Instead, operational logics are an 3.
implementation-independent way of talking aboutteys
architectures and their fundamental actions. 4.

Finally, operational logics are also a tool for garing and
examining individual works. For example, while la¢ tevel 5.
of interface actions the mechanics eicade may seem

similar to those of Joseph Weizenbaum's (1966)
Eliza/Doctor—each supports conversational interaction,
with the player allowed arbitrary textual input—an g.

examination of the underlying logics reveals a kstar
contrast. Eliza/Doctots conversational logic is one of
transformation, turning each audience statemerd it
own reply (though designed to avoid immediate ditel
Facade, on the other hand, interprets audience text as °
discourse acts within the game's social space.héyrt
looking at the relationships between operationajic®
within a system can reveal where interpretive epé&dest
spent (and help avoid error). For example, whileefia
Murray (1997) and Espen Aarseth (1997) both undedst g
the interaction mechanics of theale-Spinsystem, their
interpretations ignore the fact that planbox-baslearacter
simulation is its central operational logic, leaglinoth to
missed opportunities and inaccuracies.

c

In short, operational logics can help us see thetstre of
games and the field more deeply and broadly, inetfie
future in constructive new ways, and interpret vidlial
works more accurately. By employing an analytict dinat
cuts across multiple levels of analysis to describe
relationship between implementation and represemtatve
can begin to map the space of possibility for pdocel
representation that underlies games and all cortipng
media work.

13.Wardrip-Fruin, N.

REFERENCES

Aarseth, E. Cybertext: Perspectives on ergodic
literature. Johns Hopkins University Press, Baltimore,
1997.

Ahl, D. Basic Computer Game§Vorkman Publishing,
New York, 1978.

Bogost, I.Unit Operations: An approach to videogame
criticism. MIT Press, Cambridge MA, 2006.

Bogost, |.Persuasive Games: The expressive power of
videogamesMIT Press, Cambridge MA, 2007.

Marino, M. 2006a. “Critical code studiesElectronic

Book Review 2006. Available at
www.electronicbookreview.com/thread/electropoetics/
odology.

Mateas, M. “Expressive Al: A semiotic analysis of
machinic affordances.” 3rd Conference on
Computational Semiotics and New Media, University o
Teeside, UK. September 10-12, 2003.

Mateas, M. “Making games about people: Al and game
design.” Keynote Speaker, Medi@Terra: Gaming
Realities, Athens, Greece, October 4-8, 2006.

Montfort, N. Twisty Little Passages: An approach to
interactive fiction MIT Press, Cambridge MA, 2003.

. Montfort, N. “PvP:Portal versusPassage.Grand Text

Auto 2008. Available
grandtextauto.org/2008/02/24/pvp-portal-versus-
passage/

at

10.Montfort, N. and Bogost, IRacing the BeamMIT

Press, Cambridge MA, 2009.

11.Murray, J.Hamlet on the Holodeck-ree Press, New

York, 1997.

12.Sicart, M. “Defining game mechanic€Game Studie8.

2. Available at gamestudies.org/0802/articles/sicar

“Playable media and textual
instruments.” Dichtung Digital 1, 2005. Available at
http://www.dichtung-digital.com/2005/1/Wardrip-Frui

14.Wardrip-Fruin, N. “Expressive Processing: On prgees

® In particular, Murray critiquesTale-Spin for plot
structures that are too abstract (in fact, it costano plot
structures) and devotes the next chapter to sieullat
characters (but makes no mentioriTafe-Spirs interesting
planning logic for character behavior) [11]. Aatsetn the
other hand, use¥ale-Spinas an example in an argument
that machines should not be forced to simulate muma
narrators, when the absence of simulated narraton
primary critique ofTale-Spinfrom those who engage its
operations. Aarseth’s missed opportunity is to wmBrs
Tale-Spinas a step toward the new genres for which he is
calling [1].

15.Wardrip-Fruin,

intensive literature and digital media,” PhD disaton,
Brown University, 2006.

N. Expressive Processing: Digital
fictions, computer games, and software studi$T
Press, Cambridge MA, 20009.

