
Situated Play, Proceedings of DiGRA 2007 Conference

© 2007 Authors & Digital Games Research Association (DiGRA). Personal and educational classroom use of this paper is allowed,

commercial use requires specific permission from the author.

The Quest in a Generated World
Calvin Ashmore

School of Literature, Communication, and Culture

Georgia Institute of Technology

Atlanta, GA 30332-0165

ashmore@gmail.com

Michael Nitsche

School of Literature, Communication, and Culture

Georgia Institute of Technology

Atlanta, GA 30332-0165

michael.nitsche@lcc.gatech.edu
ABSTRACT

As procedural content becomes a more appealing option for

game development, procedurally determined context is

necessary to structure and make sense of this content. We

find that a useful means to structure content in 3D games is

the quest. The task of generating necessary context then

becomes one of quest generation. This paper describes how

we implemented a basic quest generator based on key and

lock puzzles into a procedural game world. It uses notion of

quest as spatial progression and discusses the design of the

game world and how our quest generator connects to it. Its

findings are twofold: on the technical level we managed to

implement a highly flexible content and context generator

into an existing game engine; one the content level we can

trace signs for higher player interest in quest-enhanced

procedural game worlds in comparison to unstructured

spaces.

Author Keywords

Procedural generation, spatial generation, quests, virtual

space, video game

PROCEDURAL SPACE AND THE QUEST

The field of procedural content has found a substantial

amount of attention recently. This is largely due to Will

Wright's brainchild Spore. Spore's use of generated content

is augmented by the game's open playing style. Procedural

content not only makes development cheaper but also offers

new design issues and challenges. The player of a

procedural world can actively shape its development and

customize the result. The game world itself can become a

reflection of the player and her intentions. But to do that

there must be some method of contextualizing generated

content within a game environment. The problem is less

one of content generation than one of context building. This

paper addresses the Charbitat project which uses spatial

metaphor to tackle the problem of quest generation within a

procedural space.

Procedurally generated space has been used in games since

the earliest days of electronic games. The reason was

twofold: 1) Early games did not have the necessary memory

space to hold the graphical details of designed levels; and 2)

generated levels would ensure a different experience on

each play. In that way, even technologically limited games

could offer seemingly endless game universes and a high

replay value - as seen e.g. in Elite. The difference in level of

detail or other visual cues between designed levels and

generated ones was not significant because the graphical

level of detail was limited. For example, Rogue used basic

ASCii symbols but the game world still stands for an

innovative and engaging approach. As storage space has

become ample through better data media and faster

processing of the data, hand-crafted level design has

become the norm. But with ever more powerful systems,

production costs have soared as game worlds demand ever

more content to provide their players. That is one reason

why procedurally generated content has seen a revival. It

seems to offer an exit strategy out of the spiraling increase

of content production costs.

Creating procedural content is not necessarily difficult, but

creating meaningful content is substantially more

challenging. It is relatively easy to create random levels but

far more complicated to infuse these levels with some

meaningful structures. Yet, without context and goals, the

generated behaviors, graphics, and game spaces run the

danger of becoming insubstantial and tedious. Even if it is

rife with interactivity and content, without context, the

space is merely an empty shell instead of a game. As in the

game Myth, such an environment is a discursive machine

[2], having the potential for gameplay but lacking purpose.

Countering this lack, we argue that generated spaces have

the potential to intrigue and inspire the player and not

merely be an open expanse or infinite dungeon. We argue

that the necessary context can be provided by procedurally

generated quests that assign significance to the game

locations.

This paper will suggest a way to generate quests by

situating them inside a player-driven procedurally generated

3D world. We implemented a prototype of this system in

the experimental game Charbitat. In Charbitat, players

generate an infinite 3D world as they explore and interact

with it. On top of this content creation, our system

generates quests situated within the space to meaningfully

direct the player’s experience by creating goals and

challenges. We thereby introduce a second tier to

procedural generation: that of context on top of content.

503

Procedural Game Spaces

In the history of games that use procedural space generation,

there have been largely two approaches. The first

concentrates on open spaces or terrain. The generation

process works by creating maps or heightfields, usually

determined by some fractal algorithm [5]. An early example

of terrain generation is in Lucasfilm's 1995 Rescue on

Fractalus!, and this sort of generative method has been

extended to form the basis for a lot of default terrain in

many games. Terrain generation eventually has been used

to form the basis for whole planets in Spore, and in non-

game programs such as TerraGen and Mojoworld.

A second approach aims at the generation of dungeons and

interior spaces. Unlike open terrain, these spaces have

explicit constraints and use them to partition the

environment. The assembly of these constraints is used to

generate new levels. This method originates in Rogue and

Nethack and has since been extended into more recent titles

like Diablo, and forms the basis for the generated dungeons

in the Nippon Ichi titles such as Disgaea and Phantom

Brave.

Other spatial generation projects use different constraints

for generation of space. One example is the CityEngine

project [11], which simulates cities by using water,

elevation, road patterns, and population density. While the

application of this project is not appropriate for a game

world, it describes a method for generating spaces based on

logical parameters. Also relevant is the Instant Architecture

project, whose aim is to create a grammar for architectural

form [15].

The space-generation method in Charbitat uses a synthesis

of all the above. It uses a tile-based system in which every

single tile is treated as a terrain and generated through a

heightmap. Every tile is populated with virtual flora and

fauna, which are positioned following certain spatial

conditional rules and filters [10]. As a result, the generated

space is not only highly versatile but also structured around

certain conditions. This allows for spatially situated quests

to be implemented into a unique and infinite procedurally

generated landscape. We see the value of such a generator,

for example, in MMO worlds or a new breed of RPG and

adventure games.

Defining the Quest

As a device, the quest transcends game genres, and can be

thought of as a means for structuring play within a virtual

environment [7]. Quests consists of several recurrent

properties, such as the objective, the task, and success or

failure conditions, several of which are explored in Aarseth

[1]. Notably, quests vary in their presentation and execution,

so developing a comprehensive definition is difficult. Here,

we shall examine quests as they are defined in several

genres and identify the kind most applicable to the

procedurally generated setting.

Quests have been widely applied in numerous games [14] in

many different ways. Some titles require quests to be

completed in a linear order others allow many concurrent

optional quests to take place at once. The simulation

described in this paper uses linear quests, but in the future,

it could be extended to accommodate others. When

searching for useful kinds of quests to adapt in a

procedurally generated environment, there are a variety of

possible options to choose from.

Quests dominate Role-Playing-Games and many Massive-

Multiplayer-Online-Games, where they often have explicit

starting and completion conditions. In this type of quest, the

player is given a specific task that they may fulfill in the

environment. In this case, quests are gradually revealed and

form a meta-structure in themselves, as seen in the leveling-

up quest structure of World of Warcraft that carefully

orchestrates spatial progression through questing that

references a character's level and ability. These quests could

be read as quests of personal growth as well as spatial

expansion. In our case we restrict it to the virtual hero and

her development that can be quantitatively measured and

regulated.

A quest-situation can also be read into mission-based games,

such as Counter Strike, in which players’ goals are encoded

in terms of explicitly defined objectives in the space such as

“Bring this virtual item to that location and activate it – then

defend it against opponents”. These goals are known to all

parties before the game starts and are often met with

opposition from other teams attempting to accomplish their

own goals within the space. For instance, players must

secure strategic areas, protect other players or non-player-

characters, or prevent the other team from reaching their

own objectives. Winning the game and delivering on a

quest within a game session depends on defeating other

players as much as it does on spatial progression.

A third type is the type of quest that is motivated by

exploration of a space. In this type of quest, players explore

a space, but are restricted by some obstacles (locks) that

have to be overcome with the help of some items (keys).

Both are presented in the game space itself. We find these

kinds of quests in the Zelda and Metroid game series.

Obstacles may not be passed until the player obtains some

token (such as an item or skill), yet the quest depends less

on the growth of the character and more on the items

collected. There are several factors at work here: first the

player must recognize the obstacle and understand that they

need to find something to get around it, then the player

must actually obtain the token, and finally the player has to

pass the obstacle. This type of activity is the key and lock

puzzle, and shall be explored in detail momentarily.

Across the various game outlined above, quests are

understood as dramatized searches that can follow certain

themes and patterns. Such patterns have been outlined e.g.

by Propp [12] and Campbell [3] – both have been applied to

game studies [13]. Others have interpreted quests a

religious or personal/ psychological journeys (e.g. pointing

at the Jungian origins of Campbell's approach). Charbitat,

504

in fact, plays with the notion of a quest as a psychological

journey in the narrative setting of an internalized

dreamscape. The hero in Charbitat has been poisoned and

remains trapped in her own dreamworld. The mission is to

find certain locations within this dreamworld to heal herself.

But although the psychological dimension of quests is

important for their understanding and context, we limit the

discussion here to the actual performance of the questing.

For the purposes of this paper, the quest is realized in a

form of spatial progression [6].

We concur with Aarseth [1]: “If we examine a number of

adventure games, they all seem quite similar in terms of

form: the player-avatar must move through a landscape in

order to fulfill a goal while mastering a series of challenges.

This phenomenon is called a quest.” Aarseth's definition

has three elements: the space, the challenges, and the goal.

In addition, we suggest a forth element to specify a quest:

the setting. The quests in Charbitat are framed within a

larger dramatic setting that is defined by the fictional game

world that must be healed. The player’s engagement with

the game world changes depending on the way quests are

framed. Game quests like these are part of a game’s

fictional world [8]. Goals and challenges of a quest are

situated within the virtual space of a game world, which in

turn is situated within this larger fictional dramatic setting.

Together these coalesce into four core elements that are the

framework for understanding and defining quests in a

virtual world: The setting, the space, the challenge, and the

goal.

This definition poses certain demands to quest generation.

Certain conditions have to be met in order to make a quest

recognizable and accessible to the player. First, the player

must be made aware of the quest setting, understanding the

goal and objective. Next, the quest must be situated in an

accessible space, within which the player has the capacity

to fulfill the specified goal. The goal must be attainable, and

there must be obstacles to challenge the player to overcome.

For a key-lock structured quest in our case this means: the

goal is made evident when the player first encounters a lock

in the form of an spatial barrier; when the player has found

the specific token (key) that allows him or her to overcome

the barrier a second key level in the quest has been reached;

using the key to unlock the barrier opens up the space and

completes the quest. All of these steps have to be clearly

implemented in a procedural quest generation.

ON CHARBITAT

The Charbitat project is a full modification of the Unreal

Tournament game. It uses procedural techniques to generate

a game world at runtime as the player explores the already

existing environment. The system has been described in

greater detail in other papers [9, 10]. The goal in Charbitat

is to generate space according to the player's actions in the

game world. The world is partitioned into square tiles,

which may be thought of as the basic unit of space within

the game. The player navigates the overall world stitched

together from infinite tiles that are calculated on demand

and then placed in the world.

Figure 1: Different

Elements

The tiles in Charbitat can contain 3D objects that might

ordinarily be placed by a level designer. These include

static mesh objects, such as trees and rocks but also

dynamic elements such as lights, sounds, creatures, pick-up

items or powerups. While the tiles are generated as terrain

structures using height maps and malleable surfaces, objects

are spawned according to certain rules and conditions.

Every single tile is a small world generated in a

combination of the two aforementioned generation

techniques. Charbitat traces player behavior within the

world and uses this data as seed values for the tile-

generation. At the same time, the overall game world is also

weighted. Tiles can have global features that span across a

single territory. These features include rivers, walls, cliffs,

roads, or coastlines. The generated tiles persist behind the

player as she explores, coalescing the empty space into a

landscape. The player leaves the world in her trail, complete

with rivers, forests, and mountains as she moves through

the game. At any moment players can load and save worlds

to return to them later.

In our tests, the open nature of the game world in Charbitat

was appealing to players, but it lacked context. It invited

players to explore and create more of the world but did not

provide much of an immediate direction or context between

different tiles. The game has an overall narrative and

dramatic setting with several goals within the space, but the

space was not confined or limited in any way. A quest

structure was seen as necessary to direct the player's

activity.

With the tile system, the space in Charbitat is an open,

literally infinite, world. Once generated the world is a

contiguous environment. Thus, our quests had to span

beyond single tiles and operate on the level of the overall

world instead. The terrain generation offered already

affordances for impeding and blocking player progress:

rivers, walls, and cliffs. Games that use key and lock

puzzles, such as the Zelda, Metroid, and Castlevania series,

use features like these to block the player's progress within

the space. Instead of partitioning the game experience via

505

levels and stages, they use the environment itself to limit

the player. In addition, we included virtual walls and

bridges as artificial barriers, that can be positioned

anywhere in the generated landscape. With this collection

of procedurally generated elements, Charbitat provides a

useful platform for quest generation because it fulfills the

demands for setting and blocking player progress in a

highly flexible way.

KEY AND LOCK PUZZLES

Key and lock puzzles are a widespread convention in games,

but tend to be most effective when the keys do not just open

doors but add an extra dimension to the gameplay. Keys

enable the player to perform new actions within the game

world.

In The Legend of Zelda: A Link to the Past, the magic

hammer can dispose of posts that block the player's

progress but it also is powerful against certain enemies. The

bombs that are found early in the game can be used to open

sealed walls and they can also be picked up and thrown to

fight enemies. In Super Metroid, the player can find a

grappling beam that allows movement to not only

previously inaccessible areas, but allows shortcuts through

some areas that have already been previously visited. The

engagement with the game space, quests, and objects

situated therein are closely intertwined on multiple, but not

always directly connected, levels. They carry characteristics

of puzzles.

Game designer and theorist Chris Crawford has argued

against puzzles as too static game elements [4]. But here the

key and lock puzzles are realized in a generative space,

which provides for very flexible structure. The puzzle is

finding out what is an obstacle, what and where is a key to

overcome it, and finally using the key to master the

challenge. In pre-designed environments this part is static

for most games but due to the player-driven and

procedurally generated worlds in Charbitat the conditions

in our system are ever changing.

The key and lock puzzle may be considered solved when

the location of the key is revealed, and the player is free to

move on to the next area. However, the appeal of the key

and lock puzzle is not only in determining the location of

the key and navigating to the next obstacle, but it is in the

thrill of meeting challenges along the way and the

interaction with the space and the key itself, which extends

the player's ability to interact with the game world.

Each key that needs to be found is its own quest, and the

path to the key may be fraught with challenges and

obstacles, reinforcing the power of freedom that the

newfound key gives to the player. The puzzles tie the quest

to the space of the game world. The lock itself is a property

of the space, embedded in the game environment. When the

nature of the lock in space is realized, the player's goal

becomes to apply the key so that they can overcome the

lock in the space. This introduces the quest: find the key.

The challenge is to find and apply the key item itself. To

keep this search engaging, the generation method must

place obstacles and challenges along the way to obtain the

key and finally use it to overcome the challenge. The search

is dramatized and not just a matter of mere retrieval. With

that we achieve our initial goal: to contextualize the

procedurally generated game world and increase player

involvement with it. The key and lock puzzle is the bridge

between the generated space and the quest.

IMPLEMENTATION

World and quest generation in Charbitat happen during the

expansion of the game world. Whenever a player reaches

the end of the current world and steps up to an edge of a tile

in Charbitat, a message is sent to the Java backend to create

a new tile based on the current player status and the

surrounding world. The backend will go through all of the

possible allowable configurations for that spot, and choose

the best one. It does this by scoring each possibility

according to rules that characterize the qualities quests

should have in the space. These rules are programmatically

defined and shall be explored momentarily.

In order to provide a useful extension to the current world,

the backend has to analyze the current condition and select

from the countless possible additions. For the key and lock

generation it specifically has to be aware of what keys and

locks exist in the world and how they are arranged. Based

on that knowledge it creates tiles that manifest the

appropriate quest structure in the new game space using

structures such as rivers or walls that can block player

progress and spawning keys as pick up objects in other tiles,

Locks are a property of the tile configuration. The matter of

choosing configurations and determining where to place

keys requires a thorough analysis of the game world. This

analysis is done using a graph. Using the graph network, the

procedural quest generator applies the necessary

conditioning to structure the player’s progress. It is here

that the generator makes sure that all locks remain

unlockable and every key is spawned in the proper section.

At the same time it takes care such that not all keys will

appear too fast and too close.

Thinking only of the key and lock puzzles, the world may

be decomposed into a graph of nodes. Nodes are identifiers

for game spaces and describe to which region this space

belongs as well as the condition of this game space.

Because any tile might be separated by spatial barriers any

single time can contain different nodes belonging to

different regions that, in turn, depend on certain keys.

Nodes within a tile are connected to each other, as well as

to nodes in adjacent tiles. Each connection may have a lock

that defines what type of barrier exists between the areas

represented by the nodes. A tile with a river running

through it will have two areas which are connected by a

“swim lock”, indicating that the player must have an item

that permits swimming in order to pass from one area to the

other. The area nodes correspond to the two banks on either

506

side of the river. If the player is in one of the areas, there is

no way for him or her to move to the other side of the graph

without the appropriate key.

Figure 2: A tile split

by a river.

The locks in Charbitat are of a simple one to one mapping.

Locks are often represented as gates in the game world, and

the key is an item that will destroy the barrier. We have

implemented a number of unique keys: a swim capability to

cross rivers, bombs as weapons as well as key to destroy

crumbling walls; a water weapon to put out a gate of flames.

This logic represents generic key and lock situations using

color coded walls and keys: a red key for a red door, a

green key for a green door, and so on.

Charbitat also spawns the inhabitants of any tile. Thus,

although it is not implemented in the current version of

Charbitat, it would be possible to add enemies, specifically

boss enemies, to “guard” keys. This would provide a

growing level of dramatic tension in finding key items in

the game world and add to the existing challenge to solve

the quest.

Figure 3: Java

backend in action

The actual quest structure works by using rules that dictate

what kinds of keys and locks should be placed in the world.

These rules are defined using snippets of code called

evaluators. These evaluators take an area network, with all

of its nodes and locks, and produce a score, which ranks

that particular world. There are usually several of these

evaluators at work, which rank networks based on several

different guidelines for how the key and lock puzzles are

supposed to be implemented.

When the backend is going through the different

configurations, it will compare the full area networks that

would be created given the configuration in question, and

score the configuration based on the evaluators assessment

of the network.

Evaluators work addressing the arrangement of locks, the

grouping of accessible areas, and the placement of keys.

There are around a dozen evaluators in total that work in

Charbitat. Each evaluator aims to fix some particular rule

about key and lock placement in the world. Some

evaluators encourage the placement of keys under certain

circumstances; others restrict the placement of keys in other

circumstances. These evaluators must aim to select

configurations that will lead to a working whole. The tiles

are only parts of the game world, but the goal is to structure

the overall world, thus the evaluators must not choose

configurations that are the best at the moment, but those

which will lead to the best overall results for the game

world.

Each evaluator serves a specific purpose, representing some

property of quests that we have determined for the world of

Charbitat. One of the rules used in Charbitat is that there

must be at least three locks of a given type that precede the

appearance of a key. The evaluator that enforces this ranks

poorly any network in which fewer than three locks appear

before the corresponding key is placed. Another rule is that

the player should see many types of locks in the beginning

of the game, so that when these areas are revisited, the

player will be able to access areas that were previously

507

inaccessible. This rule’s evaluator ranks highly networks in

which there is a great diversity of locks visible in the

currently generated world. Charbitat uses a total of about

13 simple rules to define its space, but the choice and

tuning of these rules is a matter of game design rather than

the formulation of the quest itself.

The rules employed by the evaluators are flexible, and can

be modified to change the style of world and the resulting

quests and experience. Different types of rules may be

chosen to change the relation between the player's

interaction with the space and the keys and locks. Rules can

be defined to adjust the curve of dramatic tension, by

placing enemies and bosses near the keys. The evaluators

could be tuned to encourage backtracking through

previously explored space, so the player can find parts that

they missed without the new keys they've found.

Alternately, they could be tuned to eliminate backtracking

entirely so the space is entirely linear. The construction of

the evaluators thus gives a tremendous amount of design

control over the possible resulting worlds.

Since each evaluator encodes a specific rule, by changing

the programming of the evaluators, the world that they

create would be changed. However, in keeping with our

definition of quests, the tiles automatically encode the space

into the world, while the evaluators introduce the setting,

challenges, and the goals by placing obstacles, opponents,

and keys. The underlying system is flexible enough to

accommodate many variations while still maintaining the

quests’ fundamental characteristics. Without these

constraints, tiles would merely be random collections of

meaningless areas. It is in this way that the problem of

building a game world changes from raw construction to a

more manageable problem of selection, and the context of

the quest is infused into the procedural game world.

CONCLUSION

In this paper we have analyzed quests in video games with a

focus on their spatial situation and conditioning. We

consider both as key elements of any player situation within

a game universe. Based on the notion of quests as

consisting of setting, space, challenge, and goal, we

introduced a quest generator that was implemented and

tested in a procedural game world prototype. This generator

uses tiles and configurations to partition and organize space.

By embedding obstacles in the space of the generated game

world itself the generator can create quests around key and

lock puzzles that are situated in the game space. In return,

we argue that players become more engaged in the game

space thanks to the engaging context.

One of the first challenges to overcome was adapting

Unreal Tournament 2004 to work with the procedurally

generated environment. Charbitat was designed as a full

modification with the Java backend running in parallel.

Most real time game platforms – including Unreal – are

still designed for static levels or rigidly defined spaces. We

had to coax the generative behavior into the otherwise static

world. This problem comes in two parts: the first is in

actually creating the environment within the space, and the

second is in overcoming the lack of scene optimization that

is available for static scenes.

A second challenge occurs in defining the evaluators. These

are of tremendous importance in channeling the gameplay

but are difficult to write. Ultimately, these evaluators must

be able to evaluate a whole game world and make a

decision for which new tile will best fit into the whole

picture. The quality of any quest depends on them. In

Charbitat, this decision making is incremental as opposed

to holistic, which allows the world to be built up freely. But

this also means that occasionally the backend will have a

hard time getting the world to fit together so that it flows

correctly.

Charbitat has been demoed and played by visitors and other

researchers on numerous occasions. Yet, using this as a

basis to evaluate the quest generation in a traditional

usability way remains difficult. First, because the notion of

the quest might be understood very differently by different

players; second, because every player of Charbitat creates a

unique game world with different conditions and quest set

ups. No quest world is ever repeated and any direct

comparison between player performance in the game world

becomes dubious. Because our system delivers a player-

driven and completely unique game environment it

becomes difficult to compare two player performances next

to each other.

What became clear in the testing was that the prototype

supported better orientation and higher engagement with the

quest generator in place. Charbitat always featured enemy

encounters and an appealing visual environment, but with

the quest system at work players felt most intrigued by this

structuring of spatial progress. Any virtual barrier

inevitably triggered the desire to circumvent or overcome it.

Providing means for that through our system was an

effective answer to that call. We interpret this as a first

indication for a successful referencing of existing game

play mechanics in a generative environment. Basic as the

key and lock puzzle set up might be it activated the player

to engage in a quest and this activation added to player

engagement. To optimize the evaluators and fine-tune this

quest-generation more detailed evaluation is still needed.

Developing an evaluation framework for quests alone

would seem a valid future research endeavor.

The system as implemented in Charbitat provides a

fundament for further development of procedural context

generation. It invites players to experiment with the

generation and alter the evaluators. If quests are reflections

of and occasions for personal growth, then these evaluators

could be individualized to the extreme. Then players indeed

can engage with their very own personalized unique quests.

508

REFERENCES

1. Aarseth, E. “Beyond the Frontier: Quest Games as Post-

Narrative Discourse” in Ryan, M.L. Narrative Across

Media, University of Nebraska Press, 2004.

2. Aarseth, E. “Allegories of Space: The Question of

Spatiality in Computer Games” Cybertext Yearbook 2000.

Ed. Markuu Eskelinen, Raine Koskimaa. Jyväskylä,

Finland: University of Jyväskylä, 2000, pp. 152-171.

3. Cambell, J. The Hero with a Thousand Faces, 2nd Ed,

PUP Press, Princeton NJ, 1968.

4. Crawford, C. The Art of Computer Game Design.

Osborne/McGraw-Hill, Berkeley, CA, 1984.

5. Ebert, D. et al, Texturing and Modelling: A Procedural

Approach, 3rd ed, Morgan Kaufmann, San Francisco, CA

2003.

6. Fuller, M., and Jenkins, H. “Nintendo and New World

Travel Writing: A Dialogue” in Jones, S.G. (ed.)

Cybersociety: Computer-Mediated Communication and

Community, Sage Publ: Thousand Oaks, 1995, 57-72.

7. Jenkins, H. “Game Design as Narrative Architecture” in

Harrington, P. and Wardrip-Fruin, N. First Person: New

Media as Story, Performance, and Game, MIT Press,

Cambridge, MA, 2004, pp. 118-131.

8. Juul, J. Half-Real: Video Games between Real Rules and

Fictional Worlds, MIT Press, 2005.

9. Nitsche, M. et al. “Designing Procedural Game Spaces:

A Case Study”, in FuturePlay 2006, 2006.

10. Nitsche, M. et al. “The Many Worlds of Charbitat”, in

Game Set and Match II, 2006.

11. Parish, Y. and Müller, P. “Procedural modeling of

cities”, in SIGGRAPH ‘01, ACM Press, 2001.

12. Propp, V. Morphology of the Folktale 2nd Ed, University

of Texas Press, 1968.

13. Szilas, N., “Interactive Drama on Computer: Beyond

Linear

Narrative” AAAI Fall Symposium on Narrative Intelligence

Tech. Rep. FS-99-01 1999 pp. 150-156.

14. Tosca, S. “The Quest Problem in Computer Games” in

Proceedings of Technologies for Interactive Digital

Storytelling and Entertainment conference, Darmstadt,

2003.

15. Wonka, P. et al, “Instant Architecture” in ACM

Transactions in Graphics 22, 3, 2003.

REFERENCES (GAMES)

Spore, Wright, W. for Maxis/Electronic Arts, 2007

Elite, Braben, D. and Bell, I. for Firebird Software, 1984

Myth, Bungie, 1997

Rogue, Toy, M. and Arnold, K. for Artificial Intelligence

Design, 1983

Nethack, open source game, 1992

Rescue on Fractalus!, Fox, D. for Lucasfilm

Games/Activision, 1986

Disgaea: Hour of Darkness, Nippon Ichi/Atlus, 2003

Phantom Brave, Nippon Ichi/NIS America, 2004

Diablo, Blizzard Entertainment, 1996

World of Warcraft, Blizzard/Vivendi Universal, 2004

Counter Strike, Le, M. and Cliffe, J. for Valve

Software/Vivendi Universal, 1999

Return to Castle Wolfenstein, Id Software/Activision, 2002

The Legend of Zelda (series), Miyamoto, S for Nintendo

1986-2006

Metroid (series), Retro Studios/Nintendo, 1986-2007

Castlevania (series), Konami, 1997-2006

Unreal Tournament, 2004, Bleszinski, C. for Epic/Atari,

2004

509

