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ABSTRACT 

This study presents a hybrid approach to scenario adaptation in serious games, using 
Finite State Machines (FSMs) and Agent-Based Models (ABMs). Focusing on the 
educational RPG genre of software development, the proposed model aims to 
automatically adjust the behavior of non-playable characters (NPCs) and the game's 
progression based on the player's actions and preferences. The methodology 
included a literature review, followed by the development of a simulation in the 
JFLAP software, integrating FSMs to manage states and ABMs to promote dynamic 
and realistic reactions. The results highlight the viability of this integration, which 
offers an immersive experience by combining predictability and flexibility in the 
behavior of NPCs. As a limitation, we identified the need for more advanced tools to 
integrate the technologies. For future work, it is proposed that frameworks be 
developed to facilitate this approach's implementation. 
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INTRODUCTION 

There has long been a quest to facilitate the learning process, and to this end, 
various pedagogical tools and technologies have been adopted to create a bridge 
between the individual and knowledge. In this context, digital games are increasingly 
gaining ground as a facilitating technology for teaching concepts and ideas, as 
discussed in the theory of gamified learning. This theory proposes that gamification 
positively affects learning outcomes by influencing behaviors and attitudes relevant 
to learning and, over time, its applications have been shown to have small but 
significant positive effects on cognitive, motivational, and behavioral learning 
outcomes [12]. 
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It is within this context that research into the use of gamification in professional 
training—through simulations of real scenarios for teaching in the workplace—has 
been growing steadily. However, the idea of games with purposes beyond 
entertainment is not new. Serious games, a term first introduced by Clark C. Abt in 
1970 in his book Serious Games, are games that aim to instruct and inform as well as 
entertain [11]. Serious games combine elements of entertainment with educational 
purposes and are useful tools to aid learning in complex areas such as computer 
theory and software development. These games offer an interactive environment 
where players can apply theoretical concepts in practical and simulated situations, 
facilitating the understanding and retention of technical content while offering an 
error-tolerant and experimental environment. 

In this context, a wide variety of techniques, methodologies, and technologies are 
employed to enhance the learning experience, from the application of basic 
operational algorithms, such as truth tables, to deep learning approaches. Despite 
the numerous applications, a common challenge is to ensure that the non-playable 
characters (NPCs) and scenarios of serious games offer a balance between 
predictability and realism, which is essential to engage the player without 
compromising the educational objective. 

Among all these technologies, this article aims to explore how finite-state automata, 
a basic concept in the theory of computation, remains relevant for use in the field of 
game computing, especially in serious games [16]. To this end, we analyzed the 
possibility of integrating Finite State Machines (FSM) and Agent-Based Models 
(ABM), computational concepts that, although different in complexity and operation, 
can together form a well-balanced decision-making basis for the learning 
environment proposed by the serious game. 

Agent-Based Models (ABMs) are a fundamental computational technique for 
modeling complex dynamic systems composed of autonomous agents that represent 
individuals, groups, or entities. These agents make independent decisions based on 
their internal rules and interactions with other agents and the environment. Such 
models are particularly valuable for simulating phenomena in which macro-level 
patterns emerge from the aggregation of individual agent behaviors, offering insights 
into system dynamics that are not easily captured by traditional top-down models 
[17]. In the context of serious games, ABMs enable the simulation of realistic human 
behaviors, such as the decisions of a fictitious client in a software development 
project, allowing the game to adapt in real-time to the player's actions in a more 
organic and immersive way. 

To structure the behavior of agents, Finite State Machines (FSMs) are often used. In 
computation theory, a finite state machine is a mathematical model consisting of a 
finite set of states, transitions between these states, and associated actions [18]. 
Each agent can be represented by an FSM, where its behavior is defined by a current 
state and the transitions that occur based on specific conditions or inputs. For 
example, an agent can switch between states such as "waiting", "deciding", and 
"executing" according to defined rules, allowing dynamic and predictable responses 
to the environment. 

This study integrates the capabilities of ABM with FSMs to create an adaptive system 
that automatically adjusts the behavior of characters who are not under the player's 
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control—the NPCs—and the progression of the scenario as the player interacts with 
the game. This results in a more immersive and realistic environment, where the 
NPCs, who in the game scenario envisioned in this article represent the clients of a 
software development company, exhibit dynamic and reactive behaviors modeled by 
an FSM that controls state transitions based on the player's preferences and actions. 

THEORETICAL REFERENCE 

This section focuses on the theoretical concepts behind the experiment, including 
FSMs in serious and educational games, highlighting their ability to model NPC 
behavior and adjust game difficulty based on player progress and actions [3]. 
Literature showcases various FSM applications, such as creating intelligent agents 
that respond dynamically to player choices, adapting game content to user profiles, 
and optimizing educational game performance. Games like "Flora the Explorer" [2] 
and BARA [5] illustrate how FSMs simulate complex interactions and offer immersive 
learning experiences. The section emphasizes FSMs' importance in creating adaptive 
and realistic games for effective and engaging learning, especially in educational and 
professional settings. 

Finite State Machines (FSM) 

Finite State Machines (FSMs) are computational models used to describe systems 
that can exist in various states and transition between them based on inputs or 
events [18]. These models are widely used across domains such as control systems, 
formal language theory, and digital games. An FSM consists of three main 
components: states, representing the system’s conditions; events, which trigger 
transitions; and actions, which may occur during or after transitions between states 
[19]. 

Within this framework, FSMs can be categorized as deterministic (DFA) or 
non-deterministic (NFA) [20]. A Deterministic Finite Automaton (DFA) has exactly one 
transition for each state and input pair, resulting in predictable behavior. In contrast, 
a Non-deterministic Finite Automaton (NFA) allows multiple possible transitions for 
the same input, including spontaneous ones. While NFAs offer greater theoretical 
flexibility, both models are equally expressive in recognizing regular languages. 

These foundational concepts are explored throughout this article to demonstrate 
how FSMs can support the teaching of software development and computational 
theory. In particular, we examine how FSMs enable the gamification of learning by 
making complex technical content more engaging and interactive [12]. 

FSMs are widely applied in serious and educational games to model non-player 
character (NPC) behavior and dynamically adjust game difficulty. For example, Arif et 
al. [1] proposed a neural network-enhanced FSM to adapt game scenarios based on 
user profiles. In this approach, the FSM defines game states, while transitions are 
informed by a multilayer perceptron that predicts user preferences based on five 
factors: work, hobbies/interests, origin, group composition, and repetition. The 
system achieved a scenario-selection accuracy of 67.5%, highlighting the 
effectiveness of combining FSMs with artificial neural networks. 
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Another common strategy involves Dynamic Difficulty Adjustment (DDA), which 
tailors the challenge level to a player’s experience. Suaza et al. [3] implemented 
FSMs to control enemy behavior in combat, with states such as long-range attacks, 
melee attacks, movement, and retreat. Heuristics, such as the ratio of 
player-to-enemy health points (HP), guide transitions and maintain balanced 
encounters. For instance, battles are adjusted so both characters reach the end with 
comparable HP, indicating a well-calibrated challenge. 

Adeniyi et al. [4] highlight another advantage of FSMs: their ability to optimize 
performance by reducing the computational load of real-time AI decisions. This is 
especially valuable in educational games, where high frame rates (FPS) are essential 
for a responsive and fluid user experience. 

Liu et al. [5] introduced the serious game BARA, which simulates realistic software 
requirement elicitation using FSMs. In BARA, stakeholders are represented by NPCs 
whose responses change based on player actions and timing, mimicking real-world 
professional scenarios. Its accessible editing interface allows educators to customize 
scenarios without programming, making it adaptable to diverse learning contexts. 
The FSM used in BARA integrates both emotional and technical feedback, creating a 
more immersive and practical learning experience. 

In the educational game Ulun Smart-Kid [21], developed by Andrea and Nurhuda 
(2020), the FSM model plays a central role in defining the behavior of a game agent 
that acts as a virtual learning companion. This intelligent agent reacts to player input 
with emotional expressions—such as happiness, disappointment, or urgency—based 
on the correctness of word-assembly tasks in the Banjar language. Responses are 
triggered by specific in-game events (e.g., success or failure in assembling letters, or 
time running out), creating a pedagogically meaningful and interactive experience. 
The FSM enables the agent to function as a virtual tutor, offering feedback in context, 
thereby enhancing engagement and promoting personalized learning. 

The authors also emphasize that FSMs support the scalability of Ulun Smart-Kid, 
allowing for the easy addition of new game scenarios and agent behaviors. This 
design aligns with the Open/Closed Principle from object-oriented programming, 
promoting extensibility without modifying existing code. Furthermore, FSMs 
contribute to efficient game performance, enabling consistent animations and 
responsive interactions. Andrea’s and Nurhuda's work [21] illustrates how FSMs can 
significantly enhance educational game design by ensuring interactivity, adaptability, 
and maintainability. 

While previous studies use different mechanisms—such as heuristics or structured 
protocols—to manage state transitions, the model proposed in this article adopts a 
probabilistic approach inspired by Thibaud L’Yvonnet’s (2022) work [7]: 
Discrete-Time Markov Chains (DTMCs). A DTMC augments state-transition systems 
with probabilities, where the next state depends solely on the current one (i.e., the 
system is memoryless). 

Definition 1: A discrete-time Markov chain over a set of atomic propositions AP is a 
tuple (S, Sinit, P, L), where S is a set of states (state space), Sinit ⊆ S is the set of 
initial states, P: S × S → [0, 1] is the transition probability function (where ∑�′∈� 
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P(s, s′) = 1 for all s ∈ S), and L: S → 2^AP is a function that labels the states with 
atomic propositions about AP. 

Markov chains provide a discrete notion of time, considering only significant 
transitions rather than the continuous passage of time. This simplifies analysis and 
reduces computational overhead—an important consideration in modern games, 
where high-fidelity graphics and AI can impose demanding hardware requirements. 
As noted by Adeniyi et al. [4], FSMs already contribute to smoother computational 
performance by maintaining finite, manageable state spaces with predictable 
transitions. 

In summary, FSMs are part of a class of models with clearly defined rules and 
predictable behavior. Their popularity in digital games—from early classics like 
Pac-Man (1980), where they managed ghost behaviors, to modern titles like The 
Legend of Zelda: Breath of the Wild (2017)—is largely due to their ease of 
implementation and debugging. However, as expectations for realism and 
interactivity increase, FSMs reveal limitations in representing emergent behaviors 
and dynamic environments. They struggle to handle unforeseen variables or multiple 
simultaneous interactions, which can limit immersion and adaptability. 

To address these challenges, we propose integrating FSMs with Agent-Based Models 
(ABMs). While FSMs provide strict control over local NPC behaviors, ABMs enable 
more complex interactions by modeling autonomous agents that respond to external 
variables and to each other. This hybrid approach is especially useful in serious 
games, where educational goals require predictability but real-world complexity 
must also be simulated. 

In a training game for software development, for example, FSMs can define 
predictable NPC states such as "satisfied and calm", "satisfied and impatient", 
"dissatisfied and calm", and "dissatisfied and impatient", with transitions based on 
player response time and solution quality. Integrating an ABM layer would allow the 
NPCs to evolve dynamically—such as clients becoming more demanding as deadlines 
approach or reprioritizing features—thus creating a more realistic and immersive 
experience that better reflects actual project dynamics. 

Recent advances in computing and modern game engines like Unity and Unreal 
Engine make such hybrid implementations increasingly feasible. These tools support 
the integration of deterministic FSM control and emergent ABM behaviors in a 
unified framework. The result is a powerful and flexible approach that combines the 
strengths of both models—simplicity and structure from FSMs, adaptability and 
realism from ABMs—pushing the boundaries of what serious games can achieve in 
terms of educational impact and user engagement. 

Agent-Based Models  

Intelligent agents are autonomous entities capable of independently perceiving and 
acting upon their environment to achieve specific objectives [2]. Agent-Based 
Models (ABMs) enable the simulation of complex systems through three core 
components: agents, the environment, and interaction rules. Each agent follows a 
defined set of rules to assess its situation and decide on future actions, determining 
how it interacts both with other agents and the environment [6]. 
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In serious games—particularly those that simulate real-world processes such as 
software development—ABMs can model dynamic and responsive behaviors. For 
instance, fictitious clients or regional scenarios can influence evolving software 
requirements, reflecting the ever-changing nature of real-world projects. This 
modeling approach aligns the training environment of serious games with one of the 
few constants in software development: change. 

Unlike deterministic models such as FSMs, ABMs are well-suited to simulating more 
complex and decentralized behaviors. Each agent in an ABM can make decisions 
independently, based on its own perceptions and logic, resulting in flexible and often 
unpredictable system dynamics. For example, in a simulation by Hassanpour et al. 
(2022), agents modeled human behavior during an earthquake evacuation [13]. Their 
autonomy allowed them to respond with a high degree of realism, closely mimicking 
human reactions under stress. In such contexts—where unpredictability is 
desirable—ABMs provide immense value. 

However, in educational contexts, particularly serious games with learning 
objectives, unpredictability must be carefully controlled. A serious game must remain 
coherent and structured to guide the player effectively through a learning process. 
While unpredictability enhances realism, it can hinder comprehension when it 
interferes with instructional consistency. For instance, in a simulation-based game 
about software development, NPCs representing clients may need to react 
dynamically, but not so unpredictably that they disrupt the game’s pedagogical 
structure. The repetition of core procedures—such as requirement gathering, 
implementation, and testing—is critical for reinforcing learning. As such, agents 
representing clients should exhibit controlled variability, enabling different scenarios 
without undermining educational consistency. 

To reconcile these needs, this article proposes an integrated model that combines 
FSMs and ABMs. In this approach, FSMs manage predefined behavioral states and 
transitions, ensuring that NPCs remain understandable and structured in their 
reactions to player actions. ABMs, meanwhile, govern broader agent behaviors and 
interactions, enabling adaptive and dynamic reactions to changes in the environment 
or among other agents. This layered model achieves a balance between 
predictability and realism, enhancing immersion without compromising instructional 
clarity. 

A concrete example of FSM usage in educational games is Flora the Explorer [2]. In 
this game, FSMs manage the different conditions of the game, such as “waiting,” 
“correct answer,” “wrong answer,” “game won,” and “game lost.” Transitions 
between these states are determined by the player's actions, and an intelligent agent 
provides real-time feedback—such as cheerful animations for correct answers or 
explanations for incorrect ones. This combination of FSM and intelligent agents 
creates responsive and personalized learning experiences that are both engaging and 
educational. 

Beyond this, ABMs are widely employed in other game types. In RPGs, they are used 
to model opposing characters; in simulations, they can represent entire 
populations—such as during the COVID-19 pandemic [14]. Because agents in ABMs 
operate independently and interact stochastically, these models are particularly 
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effective in replicating social phenomena and collective behavior. This makes them 
well-suited to modeling realistic NPC populations and dynamic environments. 

In the case of the serious game proposed in this article—a simulation of a software 
development company—every client, developer, and even environmental factors can 
be modeled as intelligent agents with their own variables and objectives. Specifically 
for clients, an FSM would define the set of behavioral states and transitions—such as 
shifting demands, approval cycles, or feedback reactions—allowing the game to 
simulate the uncertainty of client interactions while preserving the instructional 
structure necessary for effective learning. 

RELATED WORK 

Several researchers have explored the use of Finite State Machines (FSMs) and 
Agent-Based Models (ABMs) in games to enhance scenario adaptation and 
non-playable character (NPC) behavior. These studies provide valuable insights into 
the application of computational models in game design, although they differ in 
scope, implementation, and pedagogical objectives. Most research tends to 
implement either FSMs or ABMs in isolation, with few integrating both within the 
same adaptive system—particularly in the domain of software development 
education. 

One particularly relevant study that integrates both models is “An Intelligent Agent of 
Finite State Machine in Educational Game ‘Flora the Explorer’” by Pukeng et al. 
(2019) [2]. In this work, FSMs are used to manage game states and transitions based 
on player input, while an intelligent agent observes and reacts to the FSM's current 
state. Although conceptually simple, this model provides effective real-time 
feedback, which is critical in serious educational games. 

Similarly, Adegun et al. (2020) [15], in “Design and Implementation of an Intelligent 
Gaming Agent Using A Algorithm and Finite State Machines,”* propose a hybrid 
system where agents make decisions through FSMs. Their model defines NPC states 
such as idle, attack, or search, with transitions based on environmental observations. 
This approach allows agents to perceive their surroundings and respond through 
FSM-driven behaviors, demonstrating the synergy between agent-based modeling 
and state machines in complex environments. 

From a pedagogical standpoint, the study “BARA: A Dynamic State-Based Serious 
Game for Teaching Requirements Elicitation” by Liu et al. (2023) presents a concept 
closely aligned with the game proposed in this research. While BARA focuses on 
teaching requirements elicitation, our model addresses broader aspects of software 
engineering processes, including product development and continuous validation. 
Both games aim to replicate real-life scenarios to reinforce procedural understanding 
through guided interactivity. 

Based on this brief analysis, we conclude that although prior research has 
highlighted the individual strengths of FSMs and ABMs in serious games, few studies 
have proposed a truly hybrid system—one that balances structured, rule-based 
transitions with emergent, adaptive agent behavior. Our proposed integration model 
aims to fill this gap by creating a serious educational game where NPCs respond 
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dynamically to player decisions, enhancing realism while preserving the structure 
needed for effective skill development. 

METHODOLOGY 

The methodology employed in this research began with an exploratory literature 
review conducted on the Google Scholar platform, covering the period from 2019 
to 2024. The search string used was:("serious game" OR "serious games" OR 
"serious gaming" OR "educational games") AND ("finite state machine"). This 
search yielded 665 scientific papers, from which 15 articles were selected using the 
following inclusion criteria: Peer-reviewed article format, focus on the use or 
analysis of FSMs in serious games and Emphasis on NPC behavior modeling. 

Subsequently, a secondary search was conducted by adding the term "agent-based 
model" to the query. This yielded 12 additional articles, which were filtered using 
the same selection criteria, with a preference for more recent publications to better 
reflect the current state of research in FSM and ABM integration. Below is an image 
displaying the methodology followed. 

 

Figure 1: Methodology 

Following the literature review, a preliminary FSM model was developed using the 
JFLAP tool to simulate NPC behaviors. This model included states such as “satisfied 
and calm” and “dissatisfied and impatient”, with transitions based on gameplay 
variables like player response time and solution adequacy. The JFLAP simulation 
enabled a visual and practical understanding of how FSMs can drive NPC behavior 
in serious games, based on player interaction and game events. 

However, due to JFLAP’s limitations, it was not possible to directly implement ABM 
features or simulate autonomous agent interactions. As such, while the FSM 
portion of the system was successfully modeled, full integration with ABM remains 
a subject for future work. Qualitative analysis suggests that combining FSMs and 
ABMs would substantially enhance immersion and complexity, without 
compromising the structured nature needed for educational experiences. 

The next stage of this research involves implementing a custom software prototype 
that combines FSM and ABM frameworks to create a fully dynamic and adaptive 
NPC system. This will allow us to validate, in practice, the proposed model’s 
effectiveness in delivering realistic, engaging, and pedagogically sound game 
experiences. 

RESULTS AND DISCUSSIONS 
This section will detail the development procedure for the JFLAP project, covering 
the stages involved in building the model and the results obtained from its 
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implementation. The focus will be on explaining the technical processes, decisions 
made during development, and the methodologies applied to create the game and 
design the intelligent agents. After this, the intelligent agent model adopted for the 
project will be discussed, with an emphasis on defining the rules and behaviors that 
guide the interactions of the NPCs within the game. It will be presented how the 
agents should be configured to react adaptively to the player's actions, based on 
changes in the environment and decisions made throughout the simulation.  

FSM implementation 

This section details the development process of the Finite State Machine (FSM) 
model created using JFLAP, focusing on the design decisions, technical steps, and 
methodologies employed to construct the simulation. The objective was to create a 
structured FSM capable of managing the behavior of non-playable characters 
(NPCs)—specifically, simulated clients—in a serious educational game designed to 
teach computer theory and software development. 

The FSM was implemented to simulate two key behavioral dimensions: client 
satisfaction and mood, which reflect how NPCs (clients) respond to the player's 
decisions and performance throughout a development cycle. This design emulates 
real-world client-developer interactions, where technical success must often be 
balanced with interpersonal and time-management factors. 

Customer Sets And Preference Criteria 

Each client may occupy one of four combined states, representing varying levels of 
satisfaction and urgency. These states are defined as follows: 

● Satisfied and calm: The customer is happy with the progress of the 
software and maintains a positive attitude. 

● Satisfied and Impatient: The customer likes what has been delivered, but 
expects quick responses from the player to finalize the order. 

● Dissatisfied and Calm: The customer is dissatisfied with the proposal, but 
still receptive to changes. 

● Dissatisfied and Impatient: The customer is dissatisfied and their patience 
wanes with each interaction, requiring the player to adapt quickly and 
precisely. 

These states are determined by two key gameplay variables: 

● Response Time (TR): The time taken by the player to fulfill a client’s request. 
 

● Quality of Solution (QS): A score that reflects how well the delivered solution 
meets client expectations, ranging from 0% to 100%. 

The FSM governs transitions between these states based on changes in TR and QS. 
The preference criteria include variable states that influence the customer's mood 
and satisfaction. The table below shows each of them in better detail. 
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 States What they symbolize 

Response time  Impatient 

(TA - High response 
time) 

 

Delayed customer 
service and late delivery 

of demands 

Response time  Calm 

(TB - Low Response 
Time) 

Punctual customer 
service and on-time 
delivery of demands 

Quality of the solution Dissatisfied 

(SI - Inadequate 
Solution) 

The solution was not 
delivered according to 

the defined 
requirements 

Quality of the solution Satisfied 

(SA - Adequate Solution) 

Solution delivered 
according to defined 

requirements 

Table 1: Finite state machine states 

For example, a customer who was initially satisfied and calm may become 
impatient if the player is slow to respond or makes an inadequate implementation. 
Similarly, if the customer is dissatisfied and impatient, but the player quickly makes 
adjustments, they can move into a calm state again. Transitions are limited to 
changes in one attribute at a time, ensuring realistic emotional dynamics (e.g., a 
client cannot instantly jump from “Dissatisfied and Impatient” to “Satisfied and 
Calm” without an intermediate step). 
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Figure 2: Customer state machine, representing the 
transition between states 

In the JFLAP software, the states were represented as follows: TA (High response 
time), TB (Low response time), SA (Adequate solution, i.e. in line with customer 
requirements), and SI (Inadequate solution, i.e. not in line with customer 
requirements). In this state machine, the possible transitions are from 
satisfied_calm to satisfied_impatient, dissatisfied_cal,m or remaining in the state, 
maintaining a pattern in which one of the attributes must always remain the same 
in the transition, and it is not possible to change state instantaneously to its 
complete opposite. 

Implementation of the Intelligent Agent Model in the FSM 

The integration of an Intelligent Agent Model with the Finite State Machine (FSM) 
aims to enrich the simulation by replicating, in a more realistic way, the dynamic 
and multifaceted behavior of clients in software development. This model is 
designed to capture the nuances of a programmer's day-to-day life, such as the 
need to balance deadlines, technical requirements, and relationships with 
stakeholders. The intelligent agent, in this context, is represented by each client in 
the educational game, and its main function is to react adaptively to the player's 
actions, transitioning between states of mood and satisfaction previously defined in 
the state machine. 

In the game, the client would act as an intelligent agent that constantly evaluates 
the player's performance and adjusts its behavior, simulating common situations 
faced by software developers. This behavior is managed by the state machine, 
which organizes the client's possible states and defines transitions based on 
environmental variables. The aim is to create a system that, like that of A. F. Pukeng 
et al [2], in their work on the same type of application, an intelligent finite state 
machine agent in educational games, integrates the two technologies in favor of 
the greatest possible similarity to the situation that the game seeks to prepare the 
player to face. 

The intelligent agent model has three main functions in the context of FSM: 
dynamic state management, controlling the transition between customer mood 
and satisfaction states based on variables such as response time and solution 
quality; realistic behavior simulation, creating an immersive experience by 
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replicating human behaviors, such as the gradual loss of patience with delays or the 
increase in satisfaction with fast and accurate solutions; influence on the flow of 
the game, modulating the difficulty and feedback provided to the player, forcing 
them to deal with challenges such as tight deadlines and demanding customers. For 
example, if the player takes too long to fulfill an order (high TR) or delivers an 
inadequate solution (low QS), the customer can move from "Satisfied and Calm" to 
"Satisfied and Impatient" and eventually to "Dissatisfied and Impatient", 
demanding quick and effective action to reverse the situation. 

In summary, the FSM functions as the core of the client's behavior, while the 
intelligent agent model acts as the mechanism that feeds this FSM with contextual 
data and processes the transitions. Integration takes place in such a way that the 
intelligent agent receives data from variables in the game environment: 

● Response Time (TR): Measured in seconds. High values (>5s) increase 
impatience. 

● Quality of Solution (QS): Percentage scale. Values <50% reduce satisfaction. 

The agent uses these variables to determine the state transition of the same name 
(Table 1). If the TR exceeds a threshold (e.g. 5 seconds), the customer becomes 
more impatient. Similarly, if the QS is low (e.g. below 50%), customer satisfaction 
decreases. Based on the analysis, the agent adjusts the customer's current state, 
moving through the states of the finite state machine. For example, a customer 
who was initially "Satisfied and Calm" (SC) can change to "Satisfied and Impatient" 
(SI) if the TR is high. If the player doesn't correct the situation quickly, the customer 
can become "Dissatisfied and Impatient" (II). In addition to the state transitions, the 
agent adjusts internal variables, two of which are: 

● Patience: Progressively decreases with increasing TR. 
● Satisfaction: Increases or decreases based on QS. 

The updated state of the client is reflected in the game (OUTPUT), providing visual 
and textual feedback to the player, such as NPC facial expressions or comments on 
performance. This feedback is of paramount importance, as it has been one of the 
main factors in the positive impact of gamification, being a central learning 
mechanism triggered by game design elements [11]. 

CONCLUSION 

This work presented the development of a project using the integration of Finite 
State Machines (FSM) with Agent-Based Models (ABM), intending to improve the 
simulation and behavior of NPCs (non-playable characters) in serious games. By 
combining these two approaches, we explored the possibility of creating a system 
that offers predictability in the behavior of NPCs without losing flexibility in their 
reactions to player actions. The use of FSMs helps to maintain control over game 
states and ensure a predictable experience, while ABMs allow NPCs to adapt more 
autonomously and realistically, simulating complex behaviors. Predictability helps 
ensure that the intended learning or skills are effectively achieved, as well as keeping 
the player focused on the game's objectives. On the other hand, flexibility in NPC 
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reactions adds to the player's immersion in the proposed universe, promising a more 
satisfying experience with the system. 

Despite the contributions made, some limitations were noted, such as the 
complexity of integrating the two technologies and the need for more advanced 
tools to fully implement intelligent agents. The lack of a specific environment that 
only combines FSMs and ABMs was a challenge, but it also highlighted the 
importance of future innovations in this area, since JFLAP itself is not enough to truly 
simulate this integration. To do this, it would be necessary to program both the state 
machine and the agent-based models, possibly developing a framework to make it 
easier to implement the integration of these technologies in other projects.  

As a suggestion for future work, we recommend creating software or frameworks 
that integrate these two technologies more efficiently, as well as expanding the 
model to include other types of interaction and more complex scenarios. The use of 
real data and the implementation of machine learning techniques could also be 
explored to further increase the adaptability and accuracy of agents in serious 
games. To sum up, this study has sought to contribute to instigating development 
interest in the subject and to propose the advancement of the application of 
intelligent agent models in serious games, offering a basis for the development of 
more sophisticated and effective games for teaching and training in various areas of 
knowledge. 
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