

Adaptive Scenario Selection in
Serious Games Using Finite State

Machines and Agent-Based Models
Melissa Rêgo Rodrigues

Ivaldir Honório de Farias Júnior
Universidade de Pernambuco

R. Cap. Pedro Rodrigues
São José, Garanhuns - PE, 55294-902

melissa.rego@upe.br

ivaldir.farias@upe.br

ABSTRACT

This study presents a hybrid approach to scenario adaptation in serious games, using
Finite State Machines (FSMs) and Agent-Based Models (ABMs). Focusing on the
educational RPG genre of software development, the proposed model aims to
automatically adjust the behavior of non-playable characters (NPCs) and the game's
progression based on the player's actions and preferences. The methodology
included a literature review, followed by the development of a simulation in the
JFLAP software, integrating FSMs to manage states and ABMs to promote dynamic
and realistic reactions. The results highlight the viability of this integration, which
offers an immersive experience by combining predictability and flexibility in the
behavior of NPCs. As a limitation, we identified the need for more advanced tools to
integrate the technologies. For future work, it is proposed that frameworks be
developed to facilitate this approach's implementation.

Keywords

Serious games, Finite State Machines (FSM), Agent-Based Models (ABM), Scenario
adaptation, Gamification

INTRODUCTION

There has long been a quest to facilitate the learning process, and to this end,
various pedagogical tools and technologies have been adopted to create a bridge
between the individual and knowledge. In this context, digital games are increasingly
gaining ground as a facilitating technology for teaching concepts and ideas, as
discussed in the theory of gamified learning. This theory proposes that gamification
positively affects learning outcomes by influencing behaviors and attitudes relevant
to learning and, over time, its applications have been shown to have small but
significant positive effects on cognitive, motivational, and behavioral learning
outcomes [12].

Proceedings of DiGRA 2025

© 2025 Authors & Digital Games Research Association DiGRA. Personal and educational classroom use
of this paper is allowed, commercial use requires specific permission from the author.

mailto:melissa.rego@upe.br
mailto:ivaldir.farias@upe.br

It is within this context that research into the use of gamification in professional
training—through simulations of real scenarios for teaching in the workplace—has
been growing steadily. However, the idea of games with purposes beyond
entertainment is not new. Serious games, a term first introduced by Clark C. Abt in
1970 in his book Serious Games, are games that aim to instruct and inform as well as
entertain [11]. Serious games combine elements of entertainment with educational
purposes and are useful tools to aid learning in complex areas such as computer
theory and software development. These games offer an interactive environment
where players can apply theoretical concepts in practical and simulated situations,
facilitating the understanding and retention of technical content while offering an
error-tolerant and experimental environment.

In this context, a wide variety of techniques, methodologies, and technologies are
employed to enhance the learning experience, from the application of basic
operational algorithms, such as truth tables, to deep learning approaches. Despite
the numerous applications, a common challenge is to ensure that the non-playable
characters (NPCs) and scenarios of serious games offer a balance between
predictability and realism, which is essential to engage the player without
compromising the educational objective.

Among all these technologies, this article aims to explore how finite-state automata,
a basic concept in the theory of computation, remains relevant for use in the field of
game computing, especially in serious games [16]. To this end, we analyzed the
possibility of integrating Finite State Machines (FSM) and Agent-Based Models
(ABM), computational concepts that, although different in complexity and operation,
can together form a well-balanced decision-making basis for the learning
environment proposed by the serious game.

Agent-Based Models (ABMs) are a fundamental computational technique for
modeling complex dynamic systems composed of autonomous agents that represent
individuals, groups, or entities. These agents make independent decisions based on
their internal rules and interactions with other agents and the environment. Such
models are particularly valuable for simulating phenomena in which macro-level
patterns emerge from the aggregation of individual agent behaviors, offering insights
into system dynamics that are not easily captured by traditional top-down models
[17]. In the context of serious games, ABMs enable the simulation of realistic human
behaviors, such as the decisions of a fictitious client in a software development
project, allowing the game to adapt in real-time to the player's actions in a more
organic and immersive way.

To structure the behavior of agents, Finite State Machines (FSMs) are often used. In
computation theory, a finite state machine is a mathematical model consisting of a
finite set of states, transitions between these states, and associated actions [18].
Each agent can be represented by an FSM, where its behavior is defined by a current
state and the transitions that occur based on specific conditions or inputs. For
example, an agent can switch between states such as "waiting", "deciding", and
"executing" according to defined rules, allowing dynamic and predictable responses
to the environment.

This study integrates the capabilities of ABM with FSMs to create an adaptive system
that automatically adjusts the behavior of characters who are not under the player's

 2

control—the NPCs—and the progression of the scenario as the player interacts with
the game. This results in a more immersive and realistic environment, where the
NPCs, who in the game scenario envisioned in this article represent the clients of a
software development company, exhibit dynamic and reactive behaviors modeled by
an FSM that controls state transitions based on the player's preferences and actions.

THEORETICAL REFERENCE

This section focuses on the theoretical concepts behind the experiment, including
FSMs in serious and educational games, highlighting their ability to model NPC
behavior and adjust game difficulty based on player progress and actions [3].
Literature showcases various FSM applications, such as creating intelligent agents
that respond dynamically to player choices, adapting game content to user profiles,
and optimizing educational game performance. Games like "Flora the Explorer" [2]
and BARA [5] illustrate how FSMs simulate complex interactions and offer immersive
learning experiences. The section emphasizes FSMs' importance in creating adaptive
and realistic games for effective and engaging learning, especially in educational and
professional settings.

Finite State Machines (FSM)

Finite State Machines (FSMs) are computational models used to describe systems
that can exist in various states and transition between them based on inputs or
events [18]. These models are widely used across domains such as control systems,
formal language theory, and digital games. An FSM consists of three main
components: states, representing the system’s conditions; events, which trigger
transitions; and actions, which may occur during or after transitions between states
[19].

Within this framework, FSMs can be categorized as deterministic (DFA) or
non-deterministic (NFA) [20]. A Deterministic Finite Automaton (DFA) has exactly one
transition for each state and input pair, resulting in predictable behavior. In contrast,
a Non-deterministic Finite Automaton (NFA) allows multiple possible transitions for
the same input, including spontaneous ones. While NFAs offer greater theoretical
flexibility, both models are equally expressive in recognizing regular languages.

These foundational concepts are explored throughout this article to demonstrate
how FSMs can support the teaching of software development and computational
theory. In particular, we examine how FSMs enable the gamification of learning by
making complex technical content more engaging and interactive [12].

FSMs are widely applied in serious and educational games to model non-player
character (NPC) behavior and dynamically adjust game difficulty. For example, Arif et
al. [1] proposed a neural network-enhanced FSM to adapt game scenarios based on
user profiles. In this approach, the FSM defines game states, while transitions are
informed by a multilayer perceptron that predicts user preferences based on five
factors: work, hobbies/interests, origin, group composition, and repetition. The
system achieved a scenario-selection accuracy of 67.5%, highlighting the
effectiveness of combining FSMs with artificial neural networks.

 3

Another common strategy involves Dynamic Difficulty Adjustment (DDA), which
tailors the challenge level to a player’s experience. Suaza et al. [3] implemented
FSMs to control enemy behavior in combat, with states such as long-range attacks,
melee attacks, movement, and retreat. Heuristics, such as the ratio of
player-to-enemy health points (HP), guide transitions and maintain balanced
encounters. For instance, battles are adjusted so both characters reach the end with
comparable HP, indicating a well-calibrated challenge.

Adeniyi et al. [4] highlight another advantage of FSMs: their ability to optimize
performance by reducing the computational load of real-time AI decisions. This is
especially valuable in educational games, where high frame rates (FPS) are essential
for a responsive and fluid user experience.

Liu et al. [5] introduced the serious game BARA, which simulates realistic software
requirement elicitation using FSMs. In BARA, stakeholders are represented by NPCs
whose responses change based on player actions and timing, mimicking real-world
professional scenarios. Its accessible editing interface allows educators to customize
scenarios without programming, making it adaptable to diverse learning contexts.
The FSM used in BARA integrates both emotional and technical feedback, creating a
more immersive and practical learning experience.

In the educational game Ulun Smart-Kid [21], developed by Andrea and Nurhuda
(2020), the FSM model plays a central role in defining the behavior of a game agent
that acts as a virtual learning companion. This intelligent agent reacts to player input
with emotional expressions—such as happiness, disappointment, or urgency—based
on the correctness of word-assembly tasks in the Banjar language. Responses are
triggered by specific in-game events (e.g., success or failure in assembling letters, or
time running out), creating a pedagogically meaningful and interactive experience.
The FSM enables the agent to function as a virtual tutor, offering feedback in context,
thereby enhancing engagement and promoting personalized learning.

The authors also emphasize that FSMs support the scalability of Ulun Smart-Kid,
allowing for the easy addition of new game scenarios and agent behaviors. This
design aligns with the Open/Closed Principle from object-oriented programming,
promoting extensibility without modifying existing code. Furthermore, FSMs
contribute to efficient game performance, enabling consistent animations and
responsive interactions. Andrea’s and Nurhuda's work [21] illustrates how FSMs can
significantly enhance educational game design by ensuring interactivity, adaptability,
and maintainability.

While previous studies use different mechanisms—such as heuristics or structured
protocols—to manage state transitions, the model proposed in this article adopts a
probabilistic approach inspired by Thibaud L’Yvonnet’s (2022) work [7]:
Discrete-Time Markov Chains (DTMCs). A DTMC augments state-transition systems
with probabilities, where the next state depends solely on the current one (i.e., the
system is memoryless).

Definition 1: A discrete-time Markov chain over a set of atomic propositions AP is a
tuple (S, Sinit, P, L), where S is a set of states (state space), Sinit ⊆ S is the set of
initial states, P: S × S → [0, 1] is the transition probability function (where ∑�′∈�

 4

P(s, s′) = 1 for all s ∈ S), and L: S → 2^AP is a function that labels the states with
atomic propositions about AP.

Markov chains provide a discrete notion of time, considering only significant
transitions rather than the continuous passage of time. This simplifies analysis and
reduces computational overhead—an important consideration in modern games,
where high-fidelity graphics and AI can impose demanding hardware requirements.
As noted by Adeniyi et al. [4], FSMs already contribute to smoother computational
performance by maintaining finite, manageable state spaces with predictable
transitions.

In summary, FSMs are part of a class of models with clearly defined rules and
predictable behavior. Their popularity in digital games—from early classics like
Pac-Man (1980), where they managed ghost behaviors, to modern titles like The
Legend of Zelda: Breath of the Wild (2017)—is largely due to their ease of
implementation and debugging. However, as expectations for realism and
interactivity increase, FSMs reveal limitations in representing emergent behaviors
and dynamic environments. They struggle to handle unforeseen variables or multiple
simultaneous interactions, which can limit immersion and adaptability.

To address these challenges, we propose integrating FSMs with Agent-Based Models
(ABMs). While FSMs provide strict control over local NPC behaviors, ABMs enable
more complex interactions by modeling autonomous agents that respond to external
variables and to each other. This hybrid approach is especially useful in serious
games, where educational goals require predictability but real-world complexity
must also be simulated.

In a training game for software development, for example, FSMs can define
predictable NPC states such as "satisfied and calm", "satisfied and impatient",
"dissatisfied and calm", and "dissatisfied and impatient", with transitions based on
player response time and solution quality. Integrating an ABM layer would allow the
NPCs to evolve dynamically—such as clients becoming more demanding as deadlines
approach or reprioritizing features—thus creating a more realistic and immersive
experience that better reflects actual project dynamics.

Recent advances in computing and modern game engines like Unity and Unreal
Engine make such hybrid implementations increasingly feasible. These tools support
the integration of deterministic FSM control and emergent ABM behaviors in a
unified framework. The result is a powerful and flexible approach that combines the
strengths of both models—simplicity and structure from FSMs, adaptability and
realism from ABMs—pushing the boundaries of what serious games can achieve in
terms of educational impact and user engagement.

Agent-Based Models

Intelligent agents are autonomous entities capable of independently perceiving and
acting upon their environment to achieve specific objectives [2]. Agent-Based
Models (ABMs) enable the simulation of complex systems through three core
components: agents, the environment, and interaction rules. Each agent follows a
defined set of rules to assess its situation and decide on future actions, determining
how it interacts both with other agents and the environment [6].

 5

In serious games—particularly those that simulate real-world processes such as
software development—ABMs can model dynamic and responsive behaviors. For
instance, fictitious clients or regional scenarios can influence evolving software
requirements, reflecting the ever-changing nature of real-world projects. This
modeling approach aligns the training environment of serious games with one of the
few constants in software development: change.

Unlike deterministic models such as FSMs, ABMs are well-suited to simulating more
complex and decentralized behaviors. Each agent in an ABM can make decisions
independently, based on its own perceptions and logic, resulting in flexible and often
unpredictable system dynamics. For example, in a simulation by Hassanpour et al.
(2022), agents modeled human behavior during an earthquake evacuation [13]. Their
autonomy allowed them to respond with a high degree of realism, closely mimicking
human reactions under stress. In such contexts—where unpredictability is
desirable—ABMs provide immense value.

However, in educational contexts, particularly serious games with learning
objectives, unpredictability must be carefully controlled. A serious game must remain
coherent and structured to guide the player effectively through a learning process.
While unpredictability enhances realism, it can hinder comprehension when it
interferes with instructional consistency. For instance, in a simulation-based game
about software development, NPCs representing clients may need to react
dynamically, but not so unpredictably that they disrupt the game’s pedagogical
structure. The repetition of core procedures—such as requirement gathering,
implementation, and testing—is critical for reinforcing learning. As such, agents
representing clients should exhibit controlled variability, enabling different scenarios
without undermining educational consistency.

To reconcile these needs, this article proposes an integrated model that combines
FSMs and ABMs. In this approach, FSMs manage predefined behavioral states and
transitions, ensuring that NPCs remain understandable and structured in their
reactions to player actions. ABMs, meanwhile, govern broader agent behaviors and
interactions, enabling adaptive and dynamic reactions to changes in the environment
or among other agents. This layered model achieves a balance between
predictability and realism, enhancing immersion without compromising instructional
clarity.

A concrete example of FSM usage in educational games is Flora the Explorer [2]. In
this game, FSMs manage the different conditions of the game, such as “waiting,”
“correct answer,” “wrong answer,” “game won,” and “game lost.” Transitions
between these states are determined by the player's actions, and an intelligent agent
provides real-time feedback—such as cheerful animations for correct answers or
explanations for incorrect ones. This combination of FSM and intelligent agents
creates responsive and personalized learning experiences that are both engaging and
educational.

Beyond this, ABMs are widely employed in other game types. In RPGs, they are used
to model opposing characters; in simulations, they can represent entire
populations—such as during the COVID-19 pandemic [14]. Because agents in ABMs
operate independently and interact stochastically, these models are particularly

 6

effective in replicating social phenomena and collective behavior. This makes them
well-suited to modeling realistic NPC populations and dynamic environments.

In the case of the serious game proposed in this article—a simulation of a software
development company—every client, developer, and even environmental factors can
be modeled as intelligent agents with their own variables and objectives. Specifically
for clients, an FSM would define the set of behavioral states and transitions—such as
shifting demands, approval cycles, or feedback reactions—allowing the game to
simulate the uncertainty of client interactions while preserving the instructional
structure necessary for effective learning.

RELATED WORK

Several researchers have explored the use of Finite State Machines (FSMs) and
Agent-Based Models (ABMs) in games to enhance scenario adaptation and
non-playable character (NPC) behavior. These studies provide valuable insights into
the application of computational models in game design, although they differ in
scope, implementation, and pedagogical objectives. Most research tends to
implement either FSMs or ABMs in isolation, with few integrating both within the
same adaptive system—particularly in the domain of software development
education.

One particularly relevant study that integrates both models is “An Intelligent Agent of
Finite State Machine in Educational Game ‘Flora the Explorer’” by Pukeng et al.
(2019) [2]. In this work, FSMs are used to manage game states and transitions based
on player input, while an intelligent agent observes and reacts to the FSM's current
state. Although conceptually simple, this model provides effective real-time
feedback, which is critical in serious educational games.

Similarly, Adegun et al. (2020) [15], in “Design and Implementation of an Intelligent
Gaming Agent Using A Algorithm and Finite State Machines,”* propose a hybrid
system where agents make decisions through FSMs. Their model defines NPC states
such as idle, attack, or search, with transitions based on environmental observations.
This approach allows agents to perceive their surroundings and respond through
FSM-driven behaviors, demonstrating the synergy between agent-based modeling
and state machines in complex environments.

From a pedagogical standpoint, the study “BARA: A Dynamic State-Based Serious
Game for Teaching Requirements Elicitation” by Liu et al. (2023) presents a concept
closely aligned with the game proposed in this research. While BARA focuses on
teaching requirements elicitation, our model addresses broader aspects of software
engineering processes, including product development and continuous validation.
Both games aim to replicate real-life scenarios to reinforce procedural understanding
through guided interactivity.

Based on this brief analysis, we conclude that although prior research has
highlighted the individual strengths of FSMs and ABMs in serious games, few studies
have proposed a truly hybrid system—one that balances structured, rule-based
transitions with emergent, adaptive agent behavior. Our proposed integration model
aims to fill this gap by creating a serious educational game where NPCs respond

 7

dynamically to player decisions, enhancing realism while preserving the structure
needed for effective skill development.

METHODOLOGY

The methodology employed in this research began with an exploratory literature
review conducted on the Google Scholar platform, covering the period from 2019
to 2024. The search string used was:("serious game" OR "serious games" OR
"serious gaming" OR "educational games") AND ("finite state machine"). This
search yielded 665 scientific papers, from which 15 articles were selected using the
following inclusion criteria: Peer-reviewed article format, focus on the use or
analysis of FSMs in serious games and Emphasis on NPC behavior modeling.

Subsequently, a secondary search was conducted by adding the term "agent-based
model" to the query. This yielded 12 additional articles, which were filtered using
the same selection criteria, with a preference for more recent publications to better
reflect the current state of research in FSM and ABM integration. Below is an image
displaying the methodology followed.

Figure 1: Methodology

Following the literature review, a preliminary FSM model was developed using the
JFLAP tool to simulate NPC behaviors. This model included states such as “satisfied
and calm” and “dissatisfied and impatient”, with transitions based on gameplay
variables like player response time and solution adequacy. The JFLAP simulation
enabled a visual and practical understanding of how FSMs can drive NPC behavior
in serious games, based on player interaction and game events.

However, due to JFLAP’s limitations, it was not possible to directly implement ABM
features or simulate autonomous agent interactions. As such, while the FSM
portion of the system was successfully modeled, full integration with ABM remains
a subject for future work. Qualitative analysis suggests that combining FSMs and
ABMs would substantially enhance immersion and complexity, without
compromising the structured nature needed for educational experiences.

The next stage of this research involves implementing a custom software prototype
that combines FSM and ABM frameworks to create a fully dynamic and adaptive
NPC system. This will allow us to validate, in practice, the proposed model’s
effectiveness in delivering realistic, engaging, and pedagogically sound game
experiences.

RESULTS AND DISCUSSIONS
This section will detail the development procedure for the JFLAP project, covering
the stages involved in building the model and the results obtained from its

 8

implementation. The focus will be on explaining the technical processes, decisions
made during development, and the methodologies applied to create the game and
design the intelligent agents. After this, the intelligent agent model adopted for the
project will be discussed, with an emphasis on defining the rules and behaviors that
guide the interactions of the NPCs within the game. It will be presented how the
agents should be configured to react adaptively to the player's actions, based on
changes in the environment and decisions made throughout the simulation.

FSM implementation

This section details the development process of the Finite State Machine (FSM)
model created using JFLAP, focusing on the design decisions, technical steps, and
methodologies employed to construct the simulation. The objective was to create a
structured FSM capable of managing the behavior of non-playable characters
(NPCs)—specifically, simulated clients—in a serious educational game designed to
teach computer theory and software development.

The FSM was implemented to simulate two key behavioral dimensions: client
satisfaction and mood, which reflect how NPCs (clients) respond to the player's
decisions and performance throughout a development cycle. This design emulates
real-world client-developer interactions, where technical success must often be
balanced with interpersonal and time-management factors.

Customer Sets And Preference Criteria

Each client may occupy one of four combined states, representing varying levels of
satisfaction and urgency. These states are defined as follows:

● Satisfied and calm: The customer is happy with the progress of the
software and maintains a positive attitude.

● Satisfied and Impatient: The customer likes what has been delivered, but
expects quick responses from the player to finalize the order.

● Dissatisfied and Calm: The customer is dissatisfied with the proposal, but
still receptive to changes.

● Dissatisfied and Impatient: The customer is dissatisfied and their patience
wanes with each interaction, requiring the player to adapt quickly and
precisely.

These states are determined by two key gameplay variables:

● Response Time (TR): The time taken by the player to fulfill a client’s request.

● Quality of Solution (QS): A score that reflects how well the delivered solution
meets client expectations, ranging from 0% to 100%.

The FSM governs transitions between these states based on changes in TR and QS.
The preference criteria include variable states that influence the customer's mood
and satisfaction. The table below shows each of them in better detail.

 9

 States What they symbolize

Response time Impatient

(TA - High response
time)

Delayed customer
service and late delivery

of demands

Response time Calm

(TB - Low Response
Time)

Punctual customer
service and on-time
delivery of demands

Quality of the solution Dissatisfied

(SI - Inadequate
Solution)

The solution was not
delivered according to

the defined
requirements

Quality of the solution Satisfied

(SA - Adequate Solution)

Solution delivered
according to defined

requirements

Table 1: Finite state machine states

For example, a customer who was initially satisfied and calm may become
impatient if the player is slow to respond or makes an inadequate implementation.
Similarly, if the customer is dissatisfied and impatient, but the player quickly makes
adjustments, they can move into a calm state again. Transitions are limited to
changes in one attribute at a time, ensuring realistic emotional dynamics (e.g., a
client cannot instantly jump from “Dissatisfied and Impatient” to “Satisfied and
Calm” without an intermediate step).

 10

Figure 2: Customer state machine, representing the
transition between states

In the JFLAP software, the states were represented as follows: TA (High response
time), TB (Low response time), SA (Adequate solution, i.e. in line with customer
requirements), and SI (Inadequate solution, i.e. not in line with customer
requirements). In this state machine, the possible transitions are from
satisfied_calm to satisfied_impatient, dissatisfied_cal,m or remaining in the state,
maintaining a pattern in which one of the attributes must always remain the same
in the transition, and it is not possible to change state instantaneously to its
complete opposite.

Implementation of the Intelligent Agent Model in the FSM

The integration of an Intelligent Agent Model with the Finite State Machine (FSM)
aims to enrich the simulation by replicating, in a more realistic way, the dynamic
and multifaceted behavior of clients in software development. This model is
designed to capture the nuances of a programmer's day-to-day life, such as the
need to balance deadlines, technical requirements, and relationships with
stakeholders. The intelligent agent, in this context, is represented by each client in
the educational game, and its main function is to react adaptively to the player's
actions, transitioning between states of mood and satisfaction previously defined in
the state machine.

In the game, the client would act as an intelligent agent that constantly evaluates
the player's performance and adjusts its behavior, simulating common situations
faced by software developers. This behavior is managed by the state machine,
which organizes the client's possible states and defines transitions based on
environmental variables. The aim is to create a system that, like that of A. F. Pukeng
et al [2], in their work on the same type of application, an intelligent finite state
machine agent in educational games, integrates the two technologies in favor of
the greatest possible similarity to the situation that the game seeks to prepare the
player to face.

The intelligent agent model has three main functions in the context of FSM:
dynamic state management, controlling the transition between customer mood
and satisfaction states based on variables such as response time and solution
quality; realistic behavior simulation, creating an immersive experience by

 11

replicating human behaviors, such as the gradual loss of patience with delays or the
increase in satisfaction with fast and accurate solutions; influence on the flow of
the game, modulating the difficulty and feedback provided to the player, forcing
them to deal with challenges such as tight deadlines and demanding customers. For
example, if the player takes too long to fulfill an order (high TR) or delivers an
inadequate solution (low QS), the customer can move from "Satisfied and Calm" to
"Satisfied and Impatient" and eventually to "Dissatisfied and Impatient",
demanding quick and effective action to reverse the situation.

In summary, the FSM functions as the core of the client's behavior, while the
intelligent agent model acts as the mechanism that feeds this FSM with contextual
data and processes the transitions. Integration takes place in such a way that the
intelligent agent receives data from variables in the game environment:

● Response Time (TR): Measured in seconds. High values (>5s) increase
impatience.

● Quality of Solution (QS): Percentage scale. Values <50% reduce satisfaction.

The agent uses these variables to determine the state transition of the same name
(Table 1). If the TR exceeds a threshold (e.g. 5 seconds), the customer becomes
more impatient. Similarly, if the QS is low (e.g. below 50%), customer satisfaction
decreases. Based on the analysis, the agent adjusts the customer's current state,
moving through the states of the finite state machine. For example, a customer
who was initially "Satisfied and Calm" (SC) can change to "Satisfied and Impatient"
(SI) if the TR is high. If the player doesn't correct the situation quickly, the customer
can become "Dissatisfied and Impatient" (II). In addition to the state transitions, the
agent adjusts internal variables, two of which are:

● Patience: Progressively decreases with increasing TR.
● Satisfaction: Increases or decreases based on QS.

The updated state of the client is reflected in the game (OUTPUT), providing visual
and textual feedback to the player, such as NPC facial expressions or comments on
performance. This feedback is of paramount importance, as it has been one of the
main factors in the positive impact of gamification, being a central learning
mechanism triggered by game design elements [11].

CONCLUSION

This work presented the development of a project using the integration of Finite
State Machines (FSM) with Agent-Based Models (ABM), intending to improve the
simulation and behavior of NPCs (non-playable characters) in serious games. By
combining these two approaches, we explored the possibility of creating a system
that offers predictability in the behavior of NPCs without losing flexibility in their
reactions to player actions. The use of FSMs helps to maintain control over game
states and ensure a predictable experience, while ABMs allow NPCs to adapt more
autonomously and realistically, simulating complex behaviors. Predictability helps
ensure that the intended learning or skills are effectively achieved, as well as keeping
the player focused on the game's objectives. On the other hand, flexibility in NPC

 12

reactions adds to the player's immersion in the proposed universe, promising a more
satisfying experience with the system.

Despite the contributions made, some limitations were noted, such as the
complexity of integrating the two technologies and the need for more advanced
tools to fully implement intelligent agents. The lack of a specific environment that
only combines FSMs and ABMs was a challenge, but it also highlighted the
importance of future innovations in this area, since JFLAP itself is not enough to truly
simulate this integration. To do this, it would be necessary to program both the state
machine and the agent-based models, possibly developing a framework to make it
easier to implement the integration of these technologies in other projects.

As a suggestion for future work, we recommend creating software or frameworks
that integrate these two technologies more efficiently, as well as expanding the
model to include other types of interaction and more complex scenarios. The use of
real data and the implementation of machine learning techniques could also be
explored to further increase the adaptability and accuracy of agents in serious
games. To sum up, this study has sought to contribute to instigating development
interest in the subject and to propose the advancement of the application of
intelligent agent models in serious games, offering a basis for the development of
more sophisticated and effective games for teaching and training in various areas of
knowledge.

REFERENCES

[1] Y. M. Arif et al, 2023. "An artificial neural network-based finite state machine for
adaptive scenario selection in serious game." Int. J. Intell. Eng. Syst., vol. 16, no. 5,
pp. 488-500.

[2] A. F. Pukeng et al, 2019. "An intelligent agent of finite state machine in
educational game 'Flora the Explorer'." J. Phys. Conf. Ser. pp. 042006.

[3] J. Suaza, E. Gamboa and M. Trujillo, 2019. "A health point-based dynamic
difficulty adjustment strategy for video games." In Joint Int. Conf. Ent. Comp. Ser.
Games. pp. 436-440.

[4] A. E. Adeniyi et al, 2024. "Development of Two Dimension (2D) Game Engine
with FSM-based AI." Procedia Comp. Sci., vol. 235, pp. 2996-3006.

[5] Y. Liu, T. Li, Z. Huang and Z. Yang, "BARA: A Dynamic State-based Serious Game
for Teaching Requirements Elicitation", 2023 IEEE/ACM 45th International
Conference on Software Engineering: Software Engineering Education and Training
(ICSE-SEET), Melbourne, Australia, 2023, pp. 141-152, doi:
10.1109/ICSE-SEET58685.2023.00020.

[6] Babichenko, Dmitriy, et al. "The Use of Agent-Based Models As Non-Player
Characters in Serious Games." 2020 IEEE 8th International Conference on Serious
Games and Applications for Health (SeGAH). IEEE, 2020.

 13

[7] Thibaud L.. Relationships between human activity models and brain models :
application to clinical serious games. Modeling and Simulation. Université Côte
d'Azur, 2022. English.

[8] GRIGOLETTI, Pablo Souza. Markov chains. Retrieved from, v. 19, n. 10, p. 2014,
2011.

[9] Dengel, A. (2019). Seeking the treasures of theoretical computer science
education: towards educational virtual reality for the visualization of finite state
machines. In: Proceedings of 2018 IEEE international conference on teaching,
assessment, and learning for engineering, TALE 2018.
https://doi.org/10.1109/TALE.2018.8615288

[10] Silverman, B. G., Bharathy, G., & Weyer, N. (2019). What is a good pattern of
life model? Guidance for simulations. SIMULATION, 003754971879504.
doi:10.1177/0037549718795040

[11] Abt, C. (1970). Serious Games. New York: The Viking Press.

[12] Hamari, J., Xi, N., Legaki, Z., & Morschheuser, B. (2023). Gamification. In
Hawaii International Conference on System Sciences (p. 1105).

[13] Hassanpour, S., Gonzalez, V., Liu, J., Zou, Y., & Cabrera-Guerrero, G. (2022). A
hybrid hierarchical agent-based simulation approach for buildings indoor layout
evaluation based on the post-earthquake evacuation. Advanced Engineering
Informatics, 51, 101531.

[14] M. Mohmmadnejad, M. Dorrigiv and F. Yaghmaee, "A Serious Game Designed
to Simulate Coronavirus Transmission," 2020 International Serious Games
Symposium (ISGS), Tehran, Iran, 2020, pp. 88-93, doi:
10.1109/ISGS51981.2020.9375463.

[15] Adegun, A., Ogundokun, R. O., Ogbonyomi, S., & Sadiku, P. O. (2020). Design
and implementation of an intelligent gaming agent using A* algorithm and finite state
machines. Int J Eng Res Technol. ISSN, 0974-3154.

[16] Jagdale, D. (2021). "Finite state machine in game development." International
Journal of Advanced Research in Science, Communication and Technology 10.1.

[17] Gilbert, N. (2019). Agent-based models. Sage Publications.

[18] Wang, J. (2019). Formal Methods in Computer Science. CRC Press. p. 34.
ISBN 978-1-4987-7532-8.

[19] Vieira, P., & Corchado, J. (2015). A formal machines as a player of a game. In
Distributed Computing and Artificial Intelligence, 12th International Conference (pp.
137-147). Springer International Publishing.

[20] Belzer, J.; Holzman, Albert G.; Kent, A. (1975). Encyclopedia of Computer
Science and Technology. Vol. 25. USA: CRC Press. p. 73. ISBN
978-0-8247-2275-3.

[21] Andrea, R., & Nurhuda, A. (2020). Developing Edu-Game “Ulun Smart-Kid”
Learning Media of Banjar Language and Game Agent with Finite State Machine
Model. International Journal of Education and Management Engineering, 10(6),
10-16.

 14

https://doi.org/10.1109/TALE.2018.8615288

	Adaptive Scenario Selection in Serious Games Using Finite State Machines and Agent-Based Models
	ABSTRACT
	Keywords

	INTRODUCTION
	THEORETICAL REFERENCE
	Finite State Machines (FSM)
	Agent-Based Models

	RELATED WORK
	METHODOLOGY
	RESULTS AND DISCUSSIONS
	FSM implementation
	Customer Sets And Preference Criteria
	Implementation of the Intelligent Agent Model in the FSM

	CONCLUSION
	REFERENCES

