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ABSTRACT 

Initiative is a concept which describes certain behaviors in collaborative or competitive 
play. Due to the broad usage and qualitative nature of the initiative concept, 
quantitative modeling poses several challenges. We propose to model competitive 
initiative by measuring what players pay attention to during gameplay. For this 
purpose, we decompose player actions into discrete types, Voronoi spaces and time-
ranges. We test and analyze our model empirically on a Real Time Strategy (RTS) 
dataset. As part of the analysis, we use our model to predict game outcomes through 
time with the Random Forest algorithm. Results show that a Pareto front can be 
established between game time and the predictive accuracy of game outcomes, which 
starts at 50%, followed by an exponential growth towards 80%. We conclude that 
there is empirical support for attention-based initiative. Future work can be directed 
towards refining and expanding on the model for analytical and/or predictive 
usecases. For reproducibility, we share data and corresponding results in a public 
repository. 

Keywords 

Initiative, Real Time Strategy, Random Forest, Prediction. 

 

1. INTRODUCTION 

Initiative is a well-known concept in various research arenas, including system design 
(Cohen et al. 1998), business and management (MacMillan 1982), international 
relations (Glaser and Kaufmann 1998), sports psychology (Crognier and Féry 2005) and 
games (Uiterwijk and Herik 2000). It is usually thought of as some form of proactive 
move to gain advantage, but there are also differences in definitions, both between 
the domains and within them. In this paper, we work with competitive initiative, where 
the term can be placed within the strategic, operational and tactical paradigm from 
conflict research (Judge 2009). In business and management, strategic initiative is 
commonly used to describe a means with which to gain advantage over competitors  
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(MacMillan 1982). In sports psychology and ball sports, tactical initiative can be used 
to describe the scenario when a player or team possesses control over how the ball is 
moved (Zhou and Zhang 2022). In research on competitive play, Uiterwijk & Herik 
(2000) propose the following two definitions of initiative: 
 
Definition 1: To make the first move. 
Definition 2. To control the moves made by the opponent in such a way that it leads 
to an advantage. 
 
Uiterwijk & Herik’s numerical work is tied to the first definition and turn-based games, 
and in experiments on two-player k-in-a-row and Domineering, they report a first 
mover advantage, in terms of win-probability, between 56-75%. This result bears 
utility within game communities, such as guiding tournament set-ups and how many 
games/matches two players need to play against each other to reach a decisive 
outcome. Furthermore, their work highlights both the need and possibility to quantify 
fairness, which is important in fraud-prevention and player well-being. 
 
“Predicting game [outcomes] is a critical issue for […] balancing game environments” 
(Kim et al. 2019). 
 
In this paper, the relationship between initiative and advantage is also measured 
through numerical experimentation. But contrary to Uiterwijk & Herik, we work with 
Definition 2. One characteristic of Definition 2 is its broader scope. This can be 
beneficial, due to the opportunity to unify multidisciplinary research on the initiative 
concept. But Definition 2 also comes with challenges, most notably due to terms such 
as “control”. The first definition only requires an observation of the player who makes 
the first move. The second definition requires a model which links advantage to the 
amount of control that a player has over the opponent.  
 
For our data, we use a replay dataset of human player-versus-player (pvp) Real Time 
Strategy (RTS). In pvp RTS, stationary and non-stationary objects are built and used for 
the purpose of attaining an advantage over the opponent (adaptation of Schadd et 
al.’s (2007) definition). The general problem statement is as follows: 
 
Can initiative in competitive RTS be quantified, and can it be statistically linked to 
advantage and the strength of the players? 
 
The core of our initiative model is based on the distribution of Cartesian coordinates 
and times of actions (Section 3). We investigate statistical links between our model, 
advantage and player strength (in terms of Elo ranking (Albers and Vries 2001)) 
(Section 4.1). We proceed to empirically test the model by letting it predict RTS match 
outcomes at different time-intervals, aided by a Machine Learning algorithm (Section 
4.3). Due to the multidisciplinary use of the initiative concept, we end with a short 
discussion on the extent to which our results can be generalized (Section 5). 
 
We collect our data from the game Age of Empires II Definite Edition (1999) (AoE II). 
Through several upgrades, AoE II has maintained its role as an important title within 
the Esports and RTS communities. The AoE II community includes tens-of-thousands 
of active players, both amateur and professionals, who compete in a “ranked ladder”, 
where Elo determines the rank of a player. While the generalizable properties of digital 
game-data can be debated, it provides unique opportunities when it comes to 
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accessibility, level of detail and quantity. We use 73770 match replays from 18849 
unique players in our analysis, with a total of 49679 hours of competitive interactions 
and hundreds of millions of distinguishable actions. As a comparison, data collection 
in real-world domains can be a time-consuming process, and relatable studies on 
Definition 2-type behavior there are often conducted on much smaller datasets (for 
example, Crognier and Féry 2005; Newton-Fisher 2017; Zhou and Zhang 2022). 
 
Summary of contributions: 

1. A spatio-temporal model of competitive initiative. 
2. Investigation of statistical links between the model, Elo, game outcomes and 

times in RTS. 
3. Tests of the model’s descriptive strength through its ability to predict RTS game 

outcomes. 
 

2. RELATED WORK 

2.1 Review 

Since our research questions concern competitive initiative, we exclude literature on 
collaborate initiative (see Cohen et al. (1998) for an example of collaborative 
initiative). For competitive initiative, there exists a variety of studies on Definition 2-
type behavior, but there is a lack of formal consensus with regard to terminology. 
Smith & Price (1973), for example, simulate a scenario where agents pick from a set 
of competitive behaviors, including the “escalation”. They define escalation as the 
introduction of a “dangerous” tactic as opposed to a previous “conventional” one. 
Even though Smith & Price do not use the term “initiative”, there are clear overlaps 
with Definition 2, where the “dangerous tactic” can be seen as a tool with which to 
gain control, and thereby advantage. In fact, the association between a dangerous 
tactic and control in competitive behavior is supported widely, for example in the 
“attacker’s advantage” (Glaser and Kaufmann 1998), “punch and counterpunch” 
planning (MacMillan 1982) and the High Initiative Situation (HIS) (Crognier and Féry 
2005), where the opponent is placed “on the defensive … reducing his response 
possibilities”. From these sources and Definition 2, competitive initiative can be 
understood as an attempt to seize control by forcing the opponent(s) to respond to 
some form of antagonistic escalation. When it comes to terms such as “tactic” and 
“strategy”, there can also be some linguistic ambiguities, and we use them as they 
appear in the references (we refer to Glaser and Kaufmann (1998) for robust 
definitions of these terms). 
 
Since we work with Definition 2, we need to study the concepts of control and 
advantage. When it comes to advantage, Goethe (2019) conjectures that it can be 
measured through time as a state estimate. Figure 1a is an example: We see four 
competitive behaviors, A, B, C, D, and a measurement of state estimate through time. 
Goethe exemplifies Figure 1a for a singular interaction, a time-axis given in seconds 
and advantage as an actor’s ability to act under time pressure. If the length of the 
time-axis is 2 seconds, behavior A is stronger, but if it is halved to 1 second, behavior 
C is stronger. Goethe notes that the trends in Figure 1a are theoretical and that the set 
of relevant features are application dependent (state can be modeled using 
advantage, control or initiative, for example). But given a set of such features, Goethe 
conjectures that the trends can be estimated as distributions: As seen in Figure 1a, 
A/B follow distributions of positive or negative first derivatives, whereas C/D follow 
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distributions of negative or positive second derivatives. The pairs A/B and C/D can also 
be regarded as advantage through time in a zero-sum play (advantage is zero when 
they are added).  
 
Advantage-trends like the ones shown in Figure 1a can be plotted generally. If we think 
of advantage as an Elo-rating, we can regard Newton & Fisher’s (2017) plot in Figure 
1b within the same context, where the x-axis is given in months and the y-axis as 
ranking (non zero-sum Elo). Newton & Fischer’s data concerns a population of 
primates, which they follow over several months to model changes in their dominance 
hierarchy, and relatable studies have been conducted on several other animals (Goffe 
et al., 2018, Lymbery et al., 2023). In support of Definition 2, Newton & Fischer suggest 
that dangerous tactics may be correlated with higher Elo. It is also noteworthy that 
they base their calculations of Elo not only on definite outcomes of interactions (an 
example of a definite outcome is the “retreat” in Smith & Price’s (1973) experiments). 
According to Newton & Fisher, soft displays of aggression, such as threats and 
posturing, are also valid ways with which to model changes in Elo. 
 

 
Figure 1. Ways with which to evaluate competitive behavior through time. (a): Change 
in a state-value (e.g., advantage, control or initiative) (Goethe (2019), modified). (b): 
Change in dominance hierarchy, measured through Elo ranking (Newton-Fisher, 2017). 
 
If we return to shorter time-periods, Figure 1 can be modified by discretizing the time-
axis, making it applicable to turn-based game scenarios and Definition 1, or 
extensions/deviations from it. Zhou and Zhang (2022), for example, deviate from 
Definition 1 by studying the first six moves instead of only the first, and find that 
attacking tactics in the second or fourth moves (strokes) in table-tennis rallies are the 
most important ones for a player to gain an advantage. A model by Crognier et al. 
(2005) is also discrete, but fits better within Definition 2: They categorize tennis rallies 
based on “Initiative Situations”, and find that players in possession of a “High Initiative 
Situation” are particularly successful, partly due to their ability at gaining control over 
opponent countermoves. 
 
When we move into the domain of Real Time Strategy (RTS), we find several studies 
on relationships between Definition 2-type behaviour, advantage and game time. One 
way to categorize RTS strategies is as “rule-based” and “mixed” (Marino et al. 2019), 
where the former is human-generated and more explainable, and the latter computer-
generated and less explainable. A canonical example of a rule-based strategy is the 
“rush”, which can be regarded as an extreme case of Smith & Price’s (1973) 
“escalation”. The rush often outperforms correspondingly extreme defensive 
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strategies, for example in the µRTS Artificial Intelligence (AI) tournament (Ontañón et 
al. 2018). Silva et al. (2018) include three rush strategies and three defensive strategies 
of the same rule-based type, and find that the former perform better than the latter 
in most experiments. Several studies, for example Čertickỳ et al.'s (2018) RTS feature 
analysis, emphasise rush features. IGN (2004) states that “no one can deny that rush 
tactics … are some of the most effective”, while not mentioning defensive 
alternatives. 
 
Several studies on competitive RTS are neutral regarding the quality of rule-based 
strategies, including or excluding the rush or other strategies that fit within Definition 
2. This neutral category includes mixed strategies, such as Portfolio Greedy Search 
(PGS), Stratified Strategy Selection (SSS) and Strategy Creation via Voting (SCV) (Silva 
et al. 2018). Marino et al. (2019) discuss these strategies within a Subset Selection 
Game (SSG) framework, where an AI learns to mix rule-based strategies based on 
information gathered before or during an RTS match. The most extreme examples of 
mixed strategies in RTS use Deep Reinforcement Learning (DRL), where strategic 
behaviour is learnt by a deep neural network, and from a large pool of relatively low-
level state and action types (e.g., “position”, “move” or “attack”). While DRL strategies 
demonstrate super-human play in advanced RTS scenarios (Vinyals et al. 2019; Berner 
et al. 2019), they are black-box in nature and suffer from low explainability and 
generalizability. To emphasize such problems, Glaser & Kaufmann (1998) review the 
quality of strategies in various real-world scenarios and find that the quality of the 
review is closely dependent on the quality of the data. Since DRL is specifically 
dependent on high-quality data (and on training, tuning and development time on it 
as well), it can be considered fragile in this regard. The well-known DRL RTS agent by 
Berner et al. (2019) included a significant effort tuning it to small changes to the game 
environment (the game developers changed the game several times during the scope 
of the project), and into mitigating the occurrence of various instabilities stemming 
from high agent complexity (their AI agent uses 158 million parameters). In summary, 
we find motivations for both rule-based and mixed strategies in the RTS literature, and 
we find analysis of initiative to be a balancing act between offence/defence, 
effectiveness/explainability, generalizability and data accessibility. Finally, we find 
some degree of multidisciplinary overlap on the initiative concept, which can be used 
as motivation for attempts at generalization.  
 

2.2 Data-driven inference and Random Forests 

We now discuss how models on concepts such as initiative, control and advantage can 
be used for statistical inference. In scenarios where data-availability is low, the 
inference is often carried out on all of the collected data (Newton-Fisher 2017; 
Crognier and Féry 2005; Zhou and Zhang 2022). When data-availability is high, the 
inference can be robustified by carrying it out on “unseen” data. One such possibility 
is to use the behavior of the model in future gameplay, such an RTS AI agent 
attempting to maximize win-rate in a tournament (Ontañón et al. 2018; Vinyals et al. 
2019). Another possibility is to use the model purely for statistical inference; to search 
for data-patterns on one part of the data (the training set) and to evaluate them on 
another part (the test set) (Li et al. 2012; Čertickỳ et al. 2018; Kim et al. 2019). 
 
Examples of statistical inference in RTS include Li et al. (2012) and Kim et al. (2019), 
who use the Random Forest algorithm to classify strategies and to evaluate play styles, 
respectively. Random Forest is a Machine Learning algorithm which learns to predict 
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labeled numeric outcomes by building and then combining results from a set of 
Decision Trees (Breiman 2001). In the binary prediction case, each Decision Tree has 

the classification accuracy 𝔼𝑋,𝑌{1(𝑌 = 𝜑(𝑋))}, where 𝑋 is a dataset, 𝑌 are the 

binary predictor values and 𝜑: 𝑋 → 𝑌 (Louppe, 2014). The results from all the 
Decision Trees can then be aggregated to compute accuracy: 
 

1

𝑁
∑ 𝔼𝑋𝑖,𝑌𝑖

{1(𝑌𝑖 = 𝜑(𝑋𝑖))}𝑋𝑖,𝑌𝑖∈𝛹 , 𝑋𝑖, 𝑌𝑖 ∈ 𝛹                            (1) 

 

where 𝑋𝑖, 𝑌𝑖  denote smaller datasets sampled with or without replacement from big 

dataset 𝛹 and 𝑁 the number of Decision Trees. The algorithm can then be trained and 
validated using the cross-validation technique, where it is set to train multiple times 
with ℤ+ divisions between train and test set, followed by averaging (Silva et al. 2018). 
One specific strength of the Random Forest algorithm, that we will make use of in 
Section 4, is that it can be used to extract feature importances. These can be estimated 
based on average reduction in splitting Gini impurities among the Decision Trees (Biau 
and Scornet 2016). 

 

3. MODEL 

3.1 Feature Engineering 

In this section, we introduce a set of generalizable and explainable features that can 
be extracted from gameplay in RTS and possibly even other domains. We do not 
discuss AoE II in this section, but instead use it as our experimental data in Section 4.1, 
where we also clarify how the features introduced below apply to AoE II gameplay. 
 
Dataset 𝛹: A set of recorded pvp matches, where two players 𝑝 and 𝑝’ (the 
opponent), compete to win in match 𝑚 ∈ 𝛹. We assume no hidden information 
(except for one experiment in Section 4), and henceforth we often mean either 𝑝 or 
𝑝’ in a mirrored sense, when referring to 𝑝. A player’s Elo rating is denoted 𝐸𝑙𝑜𝑝. 

Each match 𝑚 lasts for a time measure 𝑡𝑒𝑛𝑑 ∈ ℝ+. If 𝑝 wins match 𝑚, 𝑤(𝑝, 𝑚)  =  1, 
and 𝑤(𝑝, 𝑚)  =  −1 otherwise. All the features are computed on a per-match basis, 
so for brevity, we henceforth often exclude the 𝑚 letter, e.g., 𝑤(𝑝)  =  𝑤(𝑝, 𝑚).  
 
Advantage: We define advantage as equivalent to outcome 𝑤(𝑝). This definition is 
clearly coarse-grain, as real (or estimated) advantage can vary dynamically as a 
match unfolds. Modeling advantage dynamically poses its own challenging questions 
when it comes to generalization, and we argue that the winner of a match is the 
ultimate manifestation of advantage, in the basic sense that 𝑝 possesses more 
advantage than 𝑝’ in match 𝑚 if 𝑤(𝑝, 𝑚)  =  1.  
 
Origin locations: For each match, a single Cartesian origin location of 𝑝 is obtained 
using function 𝑥, 𝑦 =  𝑙(𝑝), 𝑥, 𝑦 ∈ ℝ+.  
 

Actions: During the match, player 𝑝 carries out a set of actions 𝐴𝑝, |𝐴𝑝| >  𝑐1, where 

𝑐1 ∈  ℤ+ is used to ensure that the match is not ended prematurely (if so, the match 
is dropped from 𝛹). Each 𝑎 ∈ 𝐴𝑝 is a tuple containing Cartesian coordinates 𝑙(𝑎) =

 𝑥, 𝑦 ∈ ℝ+, time 𝑡(𝑎) ∈ ℝ+, a set of subjects 𝑠(𝑎) belonging to 𝑝 and a set of objects 
𝑜(𝑎) belonging to 𝑝’. The contents of subjects and objects depend on the 
application, but their overall purpose is to provide a low-level measurement of the 
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level of control that 𝑝 exerts on 𝑝’ (we refer to Comrie (1984) for a semantic 
background on subjects and objects).   
 
First Escalation: In order to reduce the amount of irrelevant data used for inference, 
we define a delayed first action 𝑎0: 
 

𝑎0 = argmin
𝑎

(𝑡(𝑎𝛼), 𝑡(𝑎𝛽)) , 𝑎𝛼 ∈ 𝐴𝑝, 𝑎𝛽 ∈ 𝐴𝑝′                                     (2) 

 
s.t. 

              Minimum subjects: |𝑠(𝑎)| >  𝑐2, 𝑐2 ∈ ℤ+                                            (3) 
              Minimum objects: |𝑜(𝑎)| >  𝑐3, 𝑐3 ∈ ℤ+                                             (4) 

 
Constraints (2) and (3) are used to help identify the first escalation. In some 
applications it may be relevant to set 𝑎0 as the first action in the match. A later 𝑎0 is 
motivated when the application, for example in RTS, includes an initial “build-up” 
phase where Definition 2 cannot be directly applied, since it cannot be applied 
before the two players have interacted.  
 
Spatial partitioning: For each action 𝑎 ∈ 𝐴𝑝, we compute ratio 𝑟(𝑎)  =

 𝑙2(𝑙(𝑎), 𝑙(𝑝)) / 𝑙2(𝑙(𝑎), 𝑙(𝑝’)), where 𝑙2 denotes the Euclidean norm, used to carry 
out a Voronoi partition: An action is closer-to-own-origin, 𝑎 ∈ 𝑉𝑝, if 𝑟(𝑎) <  1, 𝑎 ∈

𝐴𝑝. An action is closer-to-opponent-origin, 𝑎 ∈ 𝑉𝑝
′ if 𝑟(𝑎) ≥ 1, 𝑎 ∈ 𝐴𝑝. See Figure 2 

for an example. For future work, more complex partition schemes can be attempted.  
 
Temporal partitioning: We partition the time-range 𝑡0 to 𝑡𝑒𝑛𝑑 into 𝐾 equidistant 
time-ranges 𝑇 = {[𝑡0, 𝑡1), [𝑡1, 𝑡2), … , [𝑡𝐾−1, 𝑡𝑒𝑛𝑑)}, where 𝑡0 is the time of the first 
escalation 𝑡(𝑎0). Actions 𝑎 ∈ 𝐴𝑝 are partitioned into the time-range that they 

belong to 𝑇𝑖 ∈  𝑇, 𝑖 ∈ (1, 2, … , 𝐾) (or discarded if they occur before 𝑡0). Actions in 
time-range 𝑇𝑖 are denoted 𝐴𝑝, 𝑉𝑝, 𝑉𝑝

′ ∈ 𝑇𝑖. A weakness of this approach is that 𝑡𝑒𝑛𝑑 

varies between matches, meaning that time-ranges 𝑇 also vary between matches. An 
alternative is to hard code the time ranges, e.g. using 200 second intervals: {[0s, 
200s), [200s, 400s), …, [𝑡𝑈𝐵 – 200s, 𝑡𝑈𝐵)}, where 𝑡𝑈𝐵 is an upper bound value, and 
then use zero-padding for actions between 𝑡𝑒𝑛𝑑 and 𝑡𝑈𝐵. This is a stronger approach 
for live prediction usecases, where 𝑡𝑒𝑛𝑑 is unknown. It requires more data-
processing, however, since the zero-padding has to be replaced with estimated fill 
values for inference on actions where 𝑡𝑒𝑛𝑑 < 𝑡𝑈𝐵, or alternatively, the discarding of 
matches where 𝑡𝑒𝑛𝑑 < 𝑡𝑈𝐵. Since this paper primarily focuses on the use of data for 
analysis, we leave further deliberations on this issue for future work.  
 
Control: Definition 2 requires control, and we define it as the combination of six 
spatio-temporal features. They are in the range [0, 1] and provide information 
regarding actions, subjects and objects in spatio-temporal partition 𝑉𝑝

′ ∈  𝑇𝑖, 𝑖 ∈

(1, 2, … , 𝐾). Concerning subjects and objects, we use 𝑆(𝑉𝑝
′) and 𝑂(𝑉𝑝

′) to denote all 

subjects and objects within 𝑉𝑝
′. For example: 𝑆(𝑉𝑝

′) =  {𝑠(𝑎𝑖), 𝑠(𝑎𝑖+1), … , 𝑠(𝑎𝑁)}, 

𝑎𝑖 ∈ 𝑉𝑝
′, 𝑖 ∈ 1, … , 𝑁, 𝑁 =  |𝑉𝑝

′|. Similarly, 𝑆(𝐴𝑝) and 𝑂(𝐴𝑝) denote all subjects and 

objects by player 𝑝. The six features (three for 𝑝 and three for 𝑝’) are based on ratios 
of counts: 
 

Actions:      𝑝: |𝑉𝑝
′| / |𝐴𝑝|                     𝑝′: |𝑉𝑝′

′ | / |𝐴𝑝′|                                         (5) 

       Subjects:      𝑝: |𝑆(𝑉𝑝
′)| / |𝑆(𝐴𝑝)|        𝑝′: |𝑆(𝑉𝑝′

′ )| / |𝑆(𝐴𝑝′)|                            (6) 
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Objects:      𝑝: |𝑂(𝑉𝑝
′)| / |𝑂(𝐴𝑝)|       𝑝′: |𝑂(𝑉𝑝′

′ )| / |𝑂(𝐴𝑝′)|                          (7) 

 
where 𝑉𝑝

′, 𝐴𝑝, 𝑉𝑝′
′ , 𝐴𝑝′ ∈ 𝑇𝑖, 𝑖 ∈ (1, 2, … , 𝐾). Note that these features exclude explicit 

use of the closer-to-own-origin Voronoi region 𝑉𝑝. Counts of actions, subjects and 

objects in 𝑉𝑝 are included implicitly, since 𝑉𝑝 ∪ 𝑉𝑝
′ = 𝐴𝑝 and 𝑉𝑝′ ∪ 𝑉𝑝′

′ = 𝐴𝑝′, but 

they are never explicitly used in our inference. The assumption is that Definition 2 
primarily requires control in 𝑉𝑝

′ rather than in 𝑉𝑝 because, arguably, the actions of 𝑝 

adhere more to Smith & Price’s (1973) “dangerous tactic” or “escalation” in 𝑉𝑝
′ than 

in 𝑉𝑝 (Section 2). This does not mean that actions in 𝑉𝑝 are unimportant, and for 

future work this is a natural expansion of the model.  
 
We may also ask why the denominators in features (5), (6) and (7) are used. Because 
of them, we can only infer strength proportions between the players with regard to 
how much attention they spend on actions, subjects and objects offensively 
(proportions between 𝑉𝑝

′ and 𝐴𝑝). The reason we use these denominators is because 

they are highly generalizable: Features (5), (6) and (7) suggest that explicit strength 
proportions are not a necessity to model control, but that it instead can be modeled 
purely as a psychological mechanism. In other words, players who devote a 
significant amount of attention to play in 𝑉𝑝

′, regardless of their strength (relative to 

the opponent), benefit from a higher amount of control. For prediction purposes, 
direct strength proportions are still likely useful to improve accuracy, but the 
question is by how much. In Section 4.3, we carry out an experiment where the 
performance of features (5), (6) and (7) is tested with and without their 
denominators.  
 
Initiative features: Finally, we define the following three initiative features: 
 

∆𝐴 =  |𝑉𝑝
′| / |𝐴𝑝|  − |𝑉𝑝′

′ | / |𝐴𝑝′|                                                            (8) 

∆𝑆 = |𝑆(𝑉𝑝
′ )| / |𝑆(𝐴𝑝)|  −  |𝑆(𝑉𝑝′

′ )| / |𝑆(𝐴𝑝′)|                                   (9) 

∆𝑂 =  |𝑂(𝑉𝑝
′)| / |𝑂(𝐴𝑝)|  −  |𝑂(𝑉𝑝′

′ )| / |𝑂(𝐴𝑝′)|                             (10) 

 
where 𝑉𝑝

′, 𝐴𝑝, 𝑉𝑝′
′ , 𝐴𝑝′ ∈ 𝑇𝑖, 𝑖 ∈ (1, 2, … , 𝐾). From these features we could (for 

example) hypothesize that agent 𝑝 possesses more initiative than 𝑝’ if ∆𝐴 +  ∆𝑆 +
 ∆𝑂  > 0. For prediction purposes, it may be better to use features in (5), (6) and (7) 
directly and let the prediction model learn more complex proportionalities than the 
simple subtractions in (8), (9) and (10). The main benefit of ∆𝐴, ∆𝑆 and ∆𝑂 is their 
interpretability: They simply ask which of the players spends more attention on 
actions, subjects and objects close to the opponent.  
 

3.2 Visual and numeric model evaluation 

We visualize statistical patterns between our model and Elo, match outcomes and 

times, as well as other features in dataset 𝛹 (point 2 in Section 1). In order to simplify 
visual analysis, we compute a sum of our initiative features: ∆𝐴 + ∆𝑆 + ∆𝑂, followed by 
min-max normalization to range [-1, 1] (we denote this normalized sum ∆′). This allows 
us to generate 2D diagrams where the normalized sum is plotted against other 
features, such as Elo or match time. In addition to the visual analysis, we use the 
Random Forest algorithm to predict match outcomes (point 3 in Section 1), using the 
following procedure: 
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       Algorithm 1: Random Forest training and testing procedure 
 

1. 𝑋 = 𝛹 \ 𝑤(𝑝, 𝑚), 𝑝, 𝑚 ∈ 𝛹  (features from Section 3.1 except winner/loser) 
2. 𝑌 =  𝑤(𝑝, 𝑚), 𝑝, 𝑚 ∈ 𝛹   (winner/loser) 
3. 𝑚𝑜𝑑𝑒𝑙 =  𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑋, 𝑌) 
4. 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑡𝑒𝑠𝑡𝑠𝑒𝑡_𝑠𝑐𝑜𝑟𝑒 =  𝑐𝑟𝑜𝑠𝑠_𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒(𝑋, 𝑌, 𝑚𝑜𝑑𝑒𝑙, 𝑛𝑢𝑚_𝑐𝑣 = 10) 

 
where 𝑤(𝑝, 𝑚), 𝑚, 𝑝 ∈ 𝛹 denote the winners of corresponding matches and players 

in dataset 𝛹, and 𝑛𝑢𝑚_𝑐𝑣 the number of cross-validation splits between train and 
test sets (Section 2). We aim for test-set accuracies (Equation 1) above 50%, the 
expected accuracy from a random classification. We look specifically at six feature 
combinations in 𝑋 to predict 𝑌: 
 

i. ∆𝐴, ∆𝑆 and ∆𝑂 ((8), (9), (10) in Section 3). 
ii. ∆𝐴, ∆𝑆, ∆𝑂, average Elo and pvp Elo difference. For example, if 𝐸𝑙𝑜𝑝 = 1500 

and 𝐸𝑙𝑜𝑝′ = 1600, average Elo = 1550 and pvp Elo difference = -100.  

iii. Control features (5), (6) and (7) for both players (i.e., 6 features). 
iv. Control features (5), (6) and (7) for both players, 𝐸𝑙𝑜𝑝 and 𝐸𝑙𝑜𝑝′. 

v. Control features (5), (6) and (7) for one player (i.e., 3 features). 
vi. Control features (5), (6) and (7) for one player, 𝐸𝑙𝑜𝑝 and 𝐸𝑙𝑜𝑝′. 

 
Features v and vi are of interest in scenarios where we only have information on one 
player, excluding or including Elo (in the latter case, Elo of the opponent is also 
provided). We also run smaller experiments with the Elo feature only, or where the 
denominators of features (5), (6) and (7) are added.  
 
We use the Random Forest algorithm to predict match outcomes through time 𝑇, i.e., 
we only provide current and previous data to it as we train and predict  a forest in each 
𝑇𝑖, 𝑖 ∈ (1, 2, … , 𝐾). Random Forest does not include a dedicated mechanism to weigh 
feature importance through time. For future work, algorithms including such 
capabilities (such as Long Short Term Memory cells (LSTM) and Gated Recurrent Units 
(GRU)) could therefore be explored. Instead, we run experiments with and without a 
manual weighting of features. We use time range indices 𝑖 ∈ (1, 2, … , 𝐾), to define 

linear weights 𝑊 = {𝑖/𝐾, (𝑖 + 1)/𝐾, … , 1}, followed by weighting:  �̅� = (∑ (𝐾
𝑖=1 𝑥𝑖 ∗

 𝑤𝑖))/ ∑ 𝑤𝑖
𝐾
𝑖=1 , where 𝑖 ∈ (1, 2, … , 𝐾), 𝑥 is a feature and 𝑤 ∈ 𝑊 is a weight. Hence, 

the forest is set to train on features at each time step 𝑖 ∈ (1, 2, … , 𝐾) with and without 
a linear weighted mean of the features up to that point in match time.  
 

4. EXPERIMENTS 

4.1 Data and Constants 

We use 73770 RTS two-player match recordings collected from an official AoE II 
website1. Each match is stored in binary format, and we extend on a public repository2 

(henceforth MGZ) to parse all features needed for dataset 𝛹 (Section 3). We share our 
processing and inference code, as well as subsequent result tables, in a public 
repository3. We only use matches where Elo > 900. AoE II players and matches on the 
AoE II website decrease rapidly as Elo increases beyond ~1200. We were only able to 
obtain 3167 matches with Elo > 2000, and this is due to fewer players/matches at the 
highest Elo’s, and due to recordings only being stored on the website for a limited 
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time. The 73770 recordings constitute around 85% of all the recordings we 
downloaded, where the removed subset could not be parsed by MGZ or deliver the 
sought features. Many of the discarded recordings are due to missing “Town Centers”, 
which we use for our origin locations 𝑙(𝑝) and 𝑙(𝑝’) (e.g., “nomad” maps). We also 
discard matches with fewer than 500 actions (constant 𝑐1 =  500) or which end in less 
than 60 seconds. In the remainder of this section, we go into further detail on how 
actions and other features described in Section 3.1 apply to the AoE II match 
recordings and their parsing by MGZ (in this section, we often refer to MGZ instead of 
AoE II, since we do not obtain information directly from the AoE II engine4). 
 

 
Figure 2: Example of an RTS “mini-map” (AoE II “Arabia” map type). Blue is 𝑝 and pink 
is 𝑝’. (a): The map at the start of the match. The blue and pink symbols denote the TCs 
and origin locations 𝑙(𝑝) and 𝑙(𝑝′), respectively. (b): The map after 772 seconds into 
the match, and 183 seconds after the first escalation (𝑇2 in this case). The distinct 
polygons are buildings and the shaded regions frequencies of actions (as provided by 
the “AoE II Insights” analytical service5). 𝑝 has the initiative. 
 
As is usually the case in RTS, an AoE II action starts with the selection of one or several 
static or movable entities (e.g., buildings and units, respectively). This selection is what 
we call the subject 𝑠(𝑎), 𝑎 ∈ 𝐴𝑝. The action continues with the selection of some form 

of task for the subject. We define object 𝑜(𝑎) as tasks in 𝑠(𝑎) which include an 
opponent “target” (MGZ “target_id”). In MGZ, there can never be more than 1 object, 
|𝑜(𝑎)| ∈ {0, 1} (0 when there is no target). This definition excludes objects that are 
designated autonomously by the AoE II engine. Such objects can be generated by 
(MGZ) action types “patrol”, “garrison” and “de_attack_move”. There are also objects 
which belong to the map environment (AoE II Gaia). The autonomous and map 
environment objects are deemed unessential for our purposes, as the count |𝑂(𝐴𝑝)| 

in AoE II matches is arguably large enough for statistical analysis. Concerning 
environment objects, our model is particularly protected since features (5-10) exclude 
explicit use of Voronoi region 𝑉𝑝 (where interactions between 𝑝 and the map 

environment, e.g., the “hunt”, can have some meaningful impact on the match 
outcome). 
 
Concerning the first escalation 𝑎0 (Section 3), we set constraints 𝑐2 =  2 and 𝑐3 = 1 
(𝑐3 by default since |𝑜(𝑎)| ∈ {0, 1}). 𝑐2  =  2 ensures 𝑎0 happens after early actions 
by the AoE II starting “scout” or other single units in 𝑉𝑝

′. Common AoE II early rushes 

(e.g., “Drush”, “Flush” and “Trush”) are guaranteed to either set 𝑎0 or occur after it 
with our settings. For the temporal partitioning, we set 𝐾 = 10, i.e., each match is 
divided into 10 equidistant time-ranges.  
 
Finally, we reflect on how Definition 2 and our feature processing in Section 3 
translates to informal terminology as used by the AoE II community. The AoE II 
community often refers to “map-control” and “boom” as two contrasting strategies 
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(“metas”). The former is spatio-temporally oriented to 𝑉𝑝
′ and early initiative, whereas 

the latter to 𝑉𝑝 and late initiative. The former attempts to seize control over resources 

around the map in the “early game”, followed by consolidation, whereas the latter 
slowly builds up the “home economy” (“booming”), defense and upgrades, followed 
by offense (sometimes against an “overextended” opponent). Another popular 
dichotomy is “forward” versus “defensive” new buildings, particularly in reference to 
the choice of placement of the “castle”, which provide relevant information regarding 
playstyle (the “Fast Castle” (FC) strategy is a particularly strong example). While our 
initiative model is clearly focused on the forward (𝑉′) region and more on map-control 
than the boom of the respective players (including FC), we do not have any 
predisposed judgement regarding the effectiveness of these strategies. Rather, we are 
merely interested in measuring initiative, and the model is our proposal for how this 
can be achieved.  
 

4.2 Random Forest Settings 

We use the RandomForestClassifier as described in the Scikit-Learn documentation 
(Scikit-Learn 2023) and Algorithm 1 (Section 3.2). We set parameters 
𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 =  150, 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 5 and 𝑛𝑢𝑚_𝑐𝑣 = 10. Beyond that we use 
default parameters6. These include splitting criterion (=Gini), minimum impurity 
decrease to split a node (=0), minimum samples used to split nodes (=2), minimum 
samples to construct a leaf node (=1) and bootstrapping (=True). In Appendix A, we 
provide a picture of how one of the Decision Tree within the Forest with 150 trees may 
look like (slightly scaled down) using features (8), (9) and (10). As CPU, we use Intel 
Core i7-11700. 
 
For our feature importance analysis, we use Scikit-Learn’s 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑠_ 
functionality. These importances are computed as the normalized total reduction of 
Gini by a certain feature (Mean Decrease in Impurity (MDI)). One weakness of these 
importances is that they are computed on the forest as it fits on the training set, 
meaning that some importances can be inflated due to overfitting. In future work, out-
of-bag scoring or permutation importances (both also provided by Scikit-Learn) could 
be used to mitigate this problem.  
 

4.3 Experiment Result 

We begin by visualizing statistics between times of first escalation 𝑡0, total match time 
𝑡𝑒𝑛𝑑, Elo and initiative (∆′) (Figure 3). In Figure 3a we see that 𝑡𝑒𝑛𝑑 is usually less than 
5000 seconds, but that there is a long tail (the longest match in our dataset lasted 
19610 seconds). By dividing 𝑡𝑒𝑛𝑑  / 𝐾, we get the length of our time segments 𝑇𝑖 ∈ 𝑇, 
which, from Figure 3a, we can infer are commonly around 250 seconds (since our 
experiments are run with 𝐾 = 10). Figure 3b shows that times of first escalations and 
total match times both decrease as Elo increases from 900 to 1800, but their decrease 
then stops. A small increase in 𝑡0 can even be detected for Elo’s from 2000 upward, 
when the ratio 𝑡0/𝑡𝑒𝑛𝑑 is plotted (Figure 8a, Appendix). In Figure 3c, we visualize 
initiative ∆′ as a frequency distribution, split between winner and loser: Initiative 
tends to be lower for losing players and higher for winning players. 
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Figure 3. (a): Distribution of total match time in seconds (𝑡𝑒𝑛𝑑). (b): Distributions of 
the time of first escalation (red = 𝑡0) and total match time (blue = 𝑡𝑒𝑛𝑑) for Elo ranges. 
The distributions are normalized according to “area”, meaning that the plot does not 

show that there are more matches in lower Elo ranges than higher Elo ranges in 𝛹. 
(c): Winner/loser frequency distribution of a normalized sum of initiative features (∆′). 
 
When we plot initiative ∆′ against Elo ranges {[0 – 1050), [1050 − 1350), [1350 −
1650], … , [2550 − ∞)} in Figure 4, we see that difference in initiative between the 
winner/loser decreases as Elo increases (Figure 4a), following a small but significant 
convergence (respective positive and negative linear trends both have p-value < 
0.001). This convergence could possibly be attributed to a more complex playstyle of 
highest-Elo play, leading to a decrease in the descriptive power of initiative. In Figure 
4b, we instead plot Elo in terms of its average difference between two players. We see 
that players with high initiative press it to an advantage in a similar fashion, regardless 
of the Elo of the opponent. 
 

 
Figure 4. (a): Normalized sum of initiative features (∆′) against Elo. (b): The difference 
in Elo between two players. The box edges show the first and third quartiles of the 
data (Q1, Q3) and the whiskers show (Q1 – 1.5 * IQR, Q3 + 1.5 * IQR), where IQR is the 
Inter Quartile Range.  
 
When we partition the matches into 10 time-segments (𝐾 = 10), we observe that the 
difference in initiative ∆′ between two players increases from the time of first 
escalation (Figure 5a). While many matches deviate from this trend (the shaded areas) 
mean initiative through time clearly resembles Goethe’s A/B type distributions (Figure 
1a). Note that the winner-loser distributions are separable in the very first time-range 
(𝑇1). This implies that information gathered from the first escalation to a few minutes 
(commonly) beyond that point, is sufficient to predict the winner with more than the 
expected 50% accuracy at the start of a match. This result also implies that 𝑡0 can be 
defined as an event earlier than the first escalation. 
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Figure 5. (a): Normalized sum of initiative features (∆′) through match time (cut into 
𝐾 = 10 segments). The shaded areas denote data within one standard deviation. (b): 
Random Forest accuracy when predicting winner/loser through the same time 
segments. The prediction experiment is re-run for six combinations of features (see i 
– vi in Section 3.2). 
 
Moving to match outcome prediction, we see that Random Forest predictive accuracy 
increases through match time (Figure 5b and Table 1 (Appendix C)). The choice of 
features has an impact on predictive accuracy of around 5%, with a slight convergence 
towards 𝑇10. Note that the accuracy at 𝑇10 reflects the descriptive power of the 
features at the time when one of the players resigns, which normally occurs before 
that player has lost all probability of winning. Finding reasons for why a player resigns 
is beyond the scope of this paper (see Goethe (2019) and Aston-Jones & Cohen (2005) 
for a discussion on this topic), but from Figure 5b we can hypothesize that it is 
measurable as a gradient between initiative and match time. For live prediction 
usecases, Figure 5b can also be used as a Pareto front with the aim to optimize the 
time to make a prediction (live-prediction also requires hard-coded times, see Section 
3.1). Furthermore, there is a small but noticeable “bump” in the curves around 𝑇2: In 
𝑇3, predictive accuracy is often lower than in 𝑇2. As we discussed in Section 3.2, 
Random Forest has many benefits, but it is not necessarily the best choice for time-
series prediction, and the issue can possibly be mitigated by using other algorithms.  
 
Two-way correlations between initiative features ∆𝐴, ∆𝑆 and ∆𝑂 are shown in Figure 6. 
We note that the initiative features are correlated linearly, and for predictive usecases 
they may benefit from transformations such as Principal Component Analysis (PCA).   
 

 
Figure 6: Correlations between Actions ∆𝐴, Subjects ∆𝑆 and Objects ∆𝑂 features, split 
between winner/loser. 
 
The shown initiative features in Figure 6 are fundamentally based on the ratios 
|𝑉𝑝

′| / |𝐴𝑝|, |𝑆(𝑉𝑝
′)| / |𝑆(𝐴𝑝)| and |𝑂(𝑉𝑝

′)| / |𝑂(𝐴𝑝)| (the control features) which, 

due to their denominators, exclude direct strength proportions between players. 
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When the numerators |𝑉𝑝
′|, |𝑆(𝑉𝑝

′)|, |𝑂(𝑉𝑝
′)|, |𝑉𝑝′

′ |, |𝑆(𝑉𝑝′
′ )|, |𝑂(𝑉𝑝′

′ )|  (in the form of 

control features) or |𝑉𝑝
′| −  |𝑉𝑝′

′ |, |𝑆(𝑉𝑝
′ )| − |𝑆(𝑉𝑝′

′ )|, |𝑂(𝑉𝑝
′)| − |𝑂(𝑉𝑝′

′ )| (in the form 

of initiative features) are also added to the Random Forest model, accuracy tends to 
increase by 3-5%. Direct strength proportions, therefore, have a positive and hardly 
unexpected impact on predictive accuracy (see Figure 9b in Appendix for more on 
this). While these direct strength proportions are certainly helpful for prediction and 
also undoubtedly improvable (e.g., by utilizing information on unit types, upgrades 
and civilizations), they are less generalizable than the attention-based features in (8), 
(9) and (10) (Section 3.1).  
 
We show feature importances through match times in Figure 7. The pvp Elo difference 
feature initially dominates feature combination set ii (dashed red line), and then 
decreases linearly as information from the match is collected. If we compare this trend 
to the corresponding accuracy curve in Figure 5b (black), we deduce that most of the 
60% predictive accuracy at 𝑇1 is attributable to Elo (this is also close to the 58% 
accuracy we receive on predictions when we only use the Elo feature). But the black 
curve is one of the poorest performers from 𝑇8 onward, and this could be due to the 
Random Forest not decreasing the use of this feature enough, and overfitting. As a 
comparison, Elo for 𝑝 and 𝑝’ in feature sets iv and vi descend toward zero more 
aggressively, and corresponding accuracies after 𝑇8 are significantly higher in those 
cases. For verification, note the lack of importance of the average Elo feature (purple 
in ii), which shows that Elo is only useful for prediction when it is collected from both 
players.   

 
Figure 7: Feature importances through match time for the six sets of feature 
combinations (i-vi). Note that the y-axis ranges differs between the plots.   
 
When it comes to the importances between the action, subject and object features, 
we do not see evidence in Figure 7 that either of them can be removed or merged 
with other features (as Figure 6 may imply). There are also some interesting trends 
between them and time, such as the “sink” – looking shape of the objects feature in 
sets iii, iv, v and vi, which indicates that it has an interesting proportionality with the 
first escalation in the match.  
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5. CONCLUSION 

The concept of initiative is multidisciplinary, but there is little consensus regarding how 
it can be generalized and quantitatively measured. In this paper, we formulate 
initiative by decomposing players attention during competitive interactions. We 
propose statistical links between player strength (Elo) and quantifications of initiative 
and advantage. Using a large dataset from the domain of Real Time Strategy (RTS), we 
visualize clear points of separation between these features. Using our initiative model, 
we proceed to predict two-player RTS game outcomes with a Random Forest. We find 
that predictive accuracy is significant already after early interactions between the 
players. This is followed by an exponential growth toward the time when one of the 
players resigns. We conclude that the initiative concept is useful in game-theoretic 
analysis. Studies focusing on population dynamics may also benefit, as it suggests that 
measurable psychological traits, such as attention, can be used as a marker for ranking 
in dominance hierarchies. Future work can be directed at improving and expanding on 
the (publicly shared3) model, using alternative feature processing and prediction 
techniques.  
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6. APPENDIX 

6. A 

 

Figure 8: Example of a Decision Tree in the Random Forest algorithm using the 
Actions, Subjects and Objects features (8), (9) and (10) (Section 3.1). 

6. B 

 

Figure 9. (a): The ratio 𝑡0/𝑡𝑒𝑛𝑑 against Elo ranges. (b): Correlation between Subjects 
(ratio), i.e., ∆𝑆, versus Subjects where the denominator is removed. The pattern 
indicates that both features, although correlated, may contribute in a match outcome 
prediction model.   
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6. C 

 

Table 1. Predictive accuracy and feature importances of feature sets i-vi (Section 3.2) 
through match time segments 𝑇𝑖.  
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ENDNOTES 
1 https://www.ageofempires.com/stats/ageiide/, collected between September 15 – 
November 4, 2023.   
2 https://github.com/happyleavesaoc/aoc-mgz, collected October 19, 2023. 
3 https://github.com/johanoxenstierna/aoc_26 .  
4 The replay files are heavily compressed and some information (such as “resources collected”, 
“health of units/buildings”, “kills/deaths” etc.) require the replay file to be “re-run” by the AoE 
II engine, i.e., source code, to be accurately reproduced. One example is Capture Age 
(https://captureage.com/), which is a third-party extension to the AoE II engine. 
5 https://www.aoe2insights.com/, collected November 6, 2023. 
6 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble. 
RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier, collected 4 
November, 2023. 
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