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ABSTRACT
This paper explores the idea that future game consoles and computers may no longer be single 
processor units, but instead symmetrical multiprocessor units.  If this were to occur games would 
need to  be programmed with concurrency in  mind so that  they could take advantage of the 
additional  processing  units.   We  explore  past  research  and  works  in  the  field  of  parallel 
computing to find principles applicable to computer game programming.  Concepts such as the 
Flynn’s  classification,  task,  task-dependency  graphs,  dependency  analysis,  and  Bernstein’s 
conditions to concurrency are applied to computer game programming to develop a new model 
for computer games that is meant to replace the standard sequential game loop.
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INTRODUCTION
Computer games have traditionally been programmed as a single loop (see Figure 1) which takes 
user input, performs necessary computations, updates the display, and continues again for the 
subsequent frame of animation.  As computer games and the hardware they execute on increase 
in complexity, a new paradigm will emerge that will make single event-loop programs obsolete.
If  computer  architecture  existed  that  featured  multiple  processors,  it  would  behove  the 
programmer  to  parallelise  the  game  so  that  it  can  utilise  every  processor.   The  degree  of 
parallelization  would  have  to  go  beyond  a  simple  concurrent  I/O  routine,  a  math  function 
computed on a coprocessor, or a 3D scene rendered by a GPU.  
With the introduction of simultaneous multithreading (SMT) in Intel’s  Pentium 4 processors 
there will soon be a widespread platform which can also take advantage of multi-threaded code. 
Yet the introduction of multi-processor computing may go beyond general computers.  Rumours 
abound that both the PlayStation® 3 and the next XBox consoles will feature multiple processor 
architectures [1][4].  This new generation of consoles will challenge programmers to find new 
ways of decomposing their programs into parallelisable sections.  
In an industry that continually pushes the limits of hardware; the single-loop game design must 
be discarded if symmetric multiprocessor machines (SMP) become the prevalent architecture for 
future game consoles.  
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Figure 1: Traditional game loop

The structure of the paper is as follows: After the introduction, in section 2 we review Flynn’s 
hardware classification, in section 3 we discuss parallel programming design, in section 4 we 
apply parallel programme design to our game example, in section 5 we evaluate the performance 
of the system, in section 6 we conclude.

MULTI-PROCESSORS ARCHITECTURE REVIEW
We review Flynn’s classifications [1] [2][3] [5] [7]  of hardware architectures for concurrent 
programming.  The  first  of  Flynn’s  classifications  encompassed all  computer  systems  with a 
single processor executing a single stream of instructions on a single stream of data [5].  He 
classified  such  systems  as  single  instruction  stream -  single  data  stream (SISD).   Readily 
available single-processor computers running a sequential program fall under this category.
Processors  that  execute  the  same  program  on  different  streams  of  data  are  termed  single 
instruction stream - multiple data stream (SIMD) computers [5] [2].  
The classification of multiple instruction stream - multiple data stream (MIMD) is assigned to 
systems where independent processors execute programs which work on different streams of 
data [5].  
The final classification is termed multiple instruction stream - single data stream (MISD) [5].
Different  hardware  architectures  could  become  potential  target  platforms  Multi-processor 
computer  or  consoles.   Architectures  such  as:  Shared  Memory  Multiprocessor  Systems [2], 
Distributed Memory Multi-computers [6], Distributed Shared Memory [2] or Vector Computing 
[3]. 
Shared  memory  multiprocessor  systems  and  Vector  processors  are  the  most  appropriate 
architectures for game implementation [9].



PARALLEL PROGRAMMING DESIGN
The main goal of a parallel program is to execute sets of instructions simultaneously in order to 
exploit the underlying hardware and achieve a performance gain above a sequentially designed 
program.  

Task & Task Dependency Graphs
The units of computation a program is decomposed into are referred to as tasks [7].  An ideal 
parallel program will feature a set of tasks completely independent from one another and can be 
executed all at the same time.  However it is often the case that some tasks rely on data produced 
by other tasks, and must wait for those tasks to complete their execution.  A task-dependency 
graph is a data structure that can be used to represent such dependencies between tasks and their 
order of execution in relation to one another [7]. 
By  analysing  different  configurations  of  a  task-dependency  graph  for  a  given  program, 
characteristics of its concurrent execution can be designed

Conditions for Parallelism
The  following  section  presents  two  approaches  which  address  the  problem  of  identifying 
parallelism. Dependency Analysis looks to identify tasks which cannot be executed concurrently, 
while  Bernstein’s Conditions are a means of identifying sections of code (tasks) that can be 
executed in parallel.

Dependency Analysis
Dependency  Analysis  is  the  process  of  identifying  processes  which  can  be  executed 
simultaneously and those which must be executed in sequential order [2].  
Different  types of  dependence between sections of code (tasks)  exist  which can hamper  the 
opportunities for parallelism.  
Data  dependence,  which  is  broken  up  into  5  sub-categories,  is  one  of  the  main  forms  of 
dependence between program statements that hinders parallelism [6].

1. Flow dependence exists between two program statements when an execution path 
exists between S1 and S2, and at least one output from S1 serves as an input for S2. 

2. Antidependence exists if a program statement S2 follows a statement S1 and the 
output from S2 affects the input for S1.

3. Output  dependence occurs  when two statements  S1 and S2 output  to  the same 
memory location.

4. I/O dependence occurs when two statements access the same file.
5. Statement relationships that rely on data that is accessed by indirect addressing is 

categorised as Unknown dependence.
Control  Dependence is  another  category  of  dependence  that  prevents  parallelism  between 
instructions [6].  

Bernstein’s Conditions
Bernstein’s conditions [2]   fall under the category of  Resource Dependence [6], because they 
relate processes to the shared memory locations that they read from and write to.  
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They can be summarised as follows [2].
Ii is the set of memory locations read by process Pi

Oj is the set of memory locations altered by process Pj

Where φ is the empty set and ∩ is the intersection of two sets; Bernstein’s equations are:

(1) I1 ∩ O2 = φ
(2) I2 ∩ O1 = φ
(3) O1 ∩ O1 = φ

Once a sequential program is subdivided into smaller program components, it can be analysed 
using the aforementioned methods.  By analysing the data dependence, control dependence, and 
resource dependence, opportunities for parallelism can be identified [2].  

CONCURRENT DESIGN OF GAME 
We have developed a  Concurrent Game Programming Framework [9] for modelling games as 
cyclic-task-dependency graphs,  and a scheduler to execute the tasks in a game in a scalable 
multiprocessor architecture.  The framework features synchronisation primitives [8] (monitor, 
lock,  semaphore,  thread,  thread worker,  reader/writer  lock,  condition variable,  etc…),  thread 
creation objects, and classes for implementing games. The framework provides the programmer 
with solutions for synchronisation of shared resources, the creation of threads, and manages the 
execution of the game loop as a cyclic-task-dependency graph [9].

We explain below how a game can be designed to run on this framework. 

General Game Description
The game created to experiment the Concurrent Game Programming Framework is a variation 
of 3D “capture the flag.”  The player controls a car and drives around a world featuring terrain 
and sky, as well as other cars which are controlled by AI system.  See Figure 2.

Sequential Game Loop Analysis & Decomposition
Each loop-iteration of the game will involve the following instructions.

1. Poll the keyboard for user input.
2. Clear the display buffer and load the identity matrix into the rendering context.
3. Modify the scene matrix to reflect the user’s camera view.
4. Update the user’s frustum view object.
5. Render the sky background.
6. Render the terrain.
7. Update the position of each car in the game.
8. Organise each car in space partitioning structure then perform collision detection and response between 

each car.
9. Organise each flag in the space partitioning structure then perform collision detection between cars and 

flags to determine if a car has reached a flag.
10. Compute AI which searches the terrain for the closest flag to each.
11. Compute AI which guides each car to the flag.
12. Periodically check for those flags that have been captured and generate new ones.
13. Render the cars to the display buffer.
14. Render the flags to the display buffer.
15. Update the radar data.
16. Render the radar dial.
17. Update the top player list data, and check to see if the game is over.
18. Render the top player list.



19. Perform timing calculations to determine the elapsed time since the last flip of the display buffer; and flip 
the display buffer.

In a sequentially programmed game all of the tasks from 1 to 19 will be performed in sequence at 
each loop-iteration.  

 

Figure 2: Screen shot of 3D CTF game used to evaluate the Concurrent Framework

Identifying Opportunities for Concurrency
With the game decomposed into sections, those sections must now be configured in such a way 
that some of them can be executed in parallel to one another.  
An easier way to analyse the sequential game loop for opportunities for parallelism is to keep in 
mind that for Bernstein’s conditions to be satisfied, two processes must be flow-independent, 
anti-independent, and output independent.  
We will progress through each of the 19 tasks and determine their dependency relationships. 
Due to lack of space we describe the method applied only for tasks 1, 2 3, 4, and 5; for the full 
process see [9].

Designing with Dependency Relations
Task 1:
When polling the keyboard, the user input data must be taken and transferred to instructions 
which control car movement, camera controls, and registers if the user wants to exit the game.
Relation Description

User must be able to modify the camera view.

User must be able to control his car movement.
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Task 2:
Before  any  graphics-related  instructions  are  computed  the  display  buffer  must  be  cleared, 
therefore all graphics tasks have flow dependence on task 2.  It is important to note that although 
the task which flips the display buffer (task 19) follows task 2, task 2 has anti-dependence with 
task 19 because it cannot clear the buffer until it has been flipped.
Relation Description

Camera matrix cannot be applied until matrix and buffer are 
cleared.

Sky cannot be drawn until matrix and buffer are cleared.

Terrain cannot be drawn until matrix and buffer are cleared.

Cars cannot be drawn until matrix and buffer are cleared.

Flags cannot be drawn until matrix and buffer are cleared.

Radar dial cannot be drawn until matrix and buffer are cleared.

Top player list cannot be drawn until matrix and buffer are cleared.
The Display buffer cannot be cleared until after the buffer has been 
flipped and displayed on screen.

Task 3:
In order to show the game from the correct camera angle, the modifications to the world matrix 
must be made before any objects are drawn.  Therefore all objects that are rendered have a flow 
dependence on the modification of the scene matrix.
Relation Description

Frustum object cannot be updated until after the camera has 
modified the world matrix.
Sky cannot be rendered until after the camera has modified the 
world matrix.
Terrain cannot be rendered until after the camera has modified the 
world matrix.
Cars cannot be rendered until after the camera has modified the 
world matrix.
Flags cannot be rendered until after the camera has modified the 
world matrix.

Task 4:
The frustum view object is critical for culling out geometry from being placed in the graphics 
pipeline if the user will not be seeing it.  Therefore any graphics which rely on culling of objects 
before it is rendered must wait until the frustum view object is updated.
Relation Description

Since the sky geometry will be culled it has flow dependences on 
task 4.
Since the terrain geometry will be culled it has flow dependences on 
task 4.
Since the car geometry will be culled it has flow dependences on 
task 4.
Since the flag geometry will be culled it has flow dependences on 
task 4.

Task 5:
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Although the sky background has flow dependencies  on other  tasks,  there  are  no tasks that 
actually depend on the rendering of the sky for their operation.  Yet because the sky must render 
to the graphics card, it  writes to a resource that is shared among all  the other tasks that are 
involved in rendering (although task 2 and task 3 also share an output dependence relation this is 
not noted because it has already been shown that they share a flow dependence relation).
Relation Description

Two rendering tasks cannot take place at the same time.

Two rendering tasks cannot take place at the same time.

Two rendering tasks cannot take place at the same time.

Two rendering tasks cannot take place at the same time.

Two rendering tasks cannot take place at the same time.

Since all rendering tasks must write to the same location (the graphics card) they will all share 
output dependence relations with each other.  For the sake of brevity, the relations will not be 
shown for each of the other rendering tasks and can simply be assumed.
The  process  is  applied  similarly  to  the  others  tasks.  Figure  3  contains  a  completed  cyclic 
dependency graph.  It allows for all the nodes to be visited in a cyclical fashion much like in a 
typical game loop which must repeatedly perform the same tasks.
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Figure 3: Game represented as a Cyclic Dependency Graph
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Once the cyclic-task-dependency graph is obtained, it can be implemented within the Concurrent 
Game Programming Framework and take advantage of multiple processors in a shared-memory 
multiprocessor system. [9].
SYSTEMS EVALUATION
The performance results of the concurrently programmed game are assessed and compared with 
those of the traditional sequentially looped game, using simulation with The Simics simulation 
software on Windows® NT, and Hyper Threaded system.



Figure 4: Evaluating the Concurrent Execution of Tasks

Test 1 – Evaluating the Concurrent Execution of Tasks
The  first  test  (Figure  4)  was  used  to  evaluate  the  functionality  of  the  Concurrent  Game 
Programming Framework’s task manager working in conjunction with a game designed as a 
task-dependency graph being executed by 4 worker threads.  By analysing the execution times of 
each task we could determine that the task dependency rules were being adhered to and the 
expected degree of concurrency was being realised.

By observing the two time graphs we can see that the framework was successful in parallelising 
tasks  that  were  deemed  appropriate  for  concurrent  execution  by  the  cyclic-task-dependency 
graph of the game. 

Test 2 – Evaluating Performance on a Hyper-Threaded Machine
The  second  test  (Figure  5)  helped  in  the  understanding  of  the  limitations  of  using  a  task-
dependency graph as a model for a concurrent game loop in a Hyper Threaded system.  
To perform the test, 4 different game scenarios, with different maps, and number of cars, were 
chosen  and  executed  3  times  for  each  of  the  configurations  being  tested.   The  different 
configurations that the game was made to run in were as follows.

1. Sequential loop (no framework)
2. 1 worker (game with framework)
3. 2 workers (game with framework)
4. 4 workers (game with framework)

All of the results for the different scenarios were averaged for each configuration.  The system 
was tested on  Intel Pentium 4 (Hyper Threaded) 2.80 GHz, 512 MB RAM, using Windows XP 
Pro, and featuring  and NVIDIA GeForce FX 5200 (128 MB). 



Testing on a Hyper-Threaded System
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Figure 5: Frame rate results for a Hyper Threaded system

While a Hyper Threaded system provides 2 logical processors, the task dependency graph model 
requires 3 processors before a performance improvement can be expected over an equivalent 
sequential loop program. This explains the low performance.

Test 3 – Evaluating Performance on a Simulated Machine
The final test (Figure 6) helped to substantiate the claims of how a game redesigned as a cyclic-
task-dependency graph using the  Concurrent Game Programming Framework can utilise the 
available  power  of  a  shared  memory  multiprocessor  system  and  show  performance 
improvements over a sequentially looped game.



Simulator Test
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Figure 6 Frame rate results for a simulated 4 processor system

CONCLUSIONS
This paper was based on the belief that future game consoles and personal computers will feature 
multiple  identical  processors.  Games  programmed  in  the  traditional  sequential  loop  fashion 
cannot take advantage of shared memory multiprocessor hardware.  This paper took the approach 
that the game loop should be re-structured and organised as fairly granular tasks in a cyclic-task-
dependency  graph  using  a  Concurrent  Game  Programming  Framework which  features 
synchronisation primitives, thread creation objects, objects for modelling games as cyclic-task-
dependency graphs, and a scheduler to execute the tasks in a game.  A full 3D variant of capture 
the flags game, with car models, a terrain engine, car physics and car AI, is used to evaluate the 
framework.  The Concurrent Game Programming framework developed allowed for a game to be 
structured and implemented as a cyclic-task-dependency graph.  The tests performed to evaluate 
its performance capabilities showed that a game implemented in such a way and executed on a 
multiprocessor  system  could  utilise  the  available  processors  and  exhibit  performance 
improvements.  Furthermore, once the game is implemented it is scalable and can be executed on 
any number of processors by changing the number of worker threads.  The test results collected 
have shown the framework to be useful in improving the performance of the system.
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