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ABSTRACT
This work presents issues and approaches regarding the creation of artificial
intelligence (AI) middleware to aid the development of digital games and
entertainment products in general. It starts with a discussion of the concept and
context of an AI middleware (emphasizing the relations of traditional AI areas
with computer games).

Then, some approaches to the problem of creating an AI middleware are
presented, followed by a taxonomy regarding design methods and
componentization, and related research. Finally, we discuss the impact of such
middleware, open issues to be addressed and future directions.
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INTRODUCTION
As the market of digital entertainment products (especially digital games) grows,
these products get more and more complex and their users present higher and
higher expectations, requiring quality and believability in the character
behaviours. Because of these facts, artificial intelligence (AI) functionalities are no
longer held in a secondary level during development. Despite of this, AI applied
to entertainment products development, remains a complex domain and
relatively unexplored. A great source of solutions and techniques is the academic
community. Almost every game genre can benefit from what the many AI areas
have to offer in the creation of more realistic and interesting environments and
NPCs (Non Player Characters) or even in the control of the narrative flow.

Besides the previously cited, the application of artificial intelligence in digital
games offers very interesting challenges and advantages from a research point of
view.  [10], for instance, presents as advantages for the AI community, the
growing realism in today games and the fact that game developers create support
for others to easily modify the games (building the so called mods); what turns
games in a highly attractive alternative to the creation of complex simulation
environments. The complexity in current games is reaching a level comparable to
the real world, but on the same time allowing the researchers to focus on the AI
issues and forget about real world motors and sensors. In other words, digital
games provide a great test-bed for artificial intelligence techniques and models
(as shown for example in, [9] and [1]).

As challenges for the AI research community, digital games offer dynamic
environments that require complex decisions (often based on incomplete
knowledge of the world), require real-time responses (limiting the available time
for reasoning), and may have to handle resource management [16]. Also, games
provide an environment where it is possible to develop and test machine learning
techniques, human-computer interfaces and interaction, knowledge
representation and intelligent architectures [12].

With the ever growing necessity of AI functionalities and the fact that some
techniques are already in use in game development, supporting tools were
created in order to help with these tasks but these tools presented little flexibility.
Without a certain level of support, a developer will spend a great part of his time
struggling with low-level details or re-implementation of common functionalities.
It is believed that the next big step in the quality of AI game techniques depends



on the creation of AI middleware, to alleviate developers and allow them to
concentrate on creative tasks related to AI.

In the following sections this work presents a discussion of the concept and
context of an AI middleware (emphasizing the relations of traditional AI areas
with computer games). Then, some approaches to the problem of creating an AI
middleware are presented, followed by a taxonomy regarding design methods
and componentization, and related research. Finally, we discuss the impact of
such middleware, open issues to be addressed and future directions.

DEFINITION
In other areas related to computer games development, such as computer
graphics, networking support and physics modelling, it is already a common
approach to use (or at least to know about) pieces of software that help the
digital games developer in the creation of the games, allowing them to focus on
the creative side of the game. This is only now staring to be seen in the artificial
intelligence segment of game development.

An Artificial Intelligence middleware is basically a layer of software that provides
services for the game engines for performing the AI functions in a computer
game. Usually also called an Artificial Intelligence Engine, AI middleware handles
the process of producing the desired behavior or decision-making of intelligent
agents present in the game world.

APPROACHES
Traditionally, computer games developers use a small set of techniques over and
over again in the implementation of artificial intelligence functionalities in games,
specially Finite State Machines (FSMs) and Fuzzy Finite Sate Machines (FuFSMs)
[24] that are basically a set of states and transitions between these states, used to
represent some kinds of behaviours; the A* algorithm [24] used for calculating
paths; and some Artificial Life (A-Life) techniques such as steering behaviours [23]
that can give a bigger realism to movements. But even with this small set of
techniques, it is possible to achieve pretty good results. Also some games make
use of Decision Trees and Production Rules when some sort of reasoning is
necessary.

The CPU time available for calculations related to the characters behaviours is
usually very short, and so, the tasks related to it can not be so CPU intense.
That’s why lots of computer game titles utilize simple approaches as FSMs (where
the transitions between states usually reflect some game world events) or rule-
based systems (RBSs), which are more flexible than a purely stimuli-response
approach (that according to [16] was the standard procedure for implementing
behaviour until very recently) for they allow objects to incorporate a internal
state, making it possible to achieve longer term goals and FSMs and simple RBSs
are as fast as the pure if-then structures used when implementing the stimuli-
response approaches.

However, the limitations of the finite state machines approach in the design of
intelligent agents are well known, FSMs are limited specially by combinatorial
explosions (as the environment complexity grows, so grows de FSM states and
transitions sets because the FSMs have to predict all possible cases and situations
on the environment) and by the potential repetitive behaviours, because the
FSMs have a fixed set of states and transitions, if the same situation happens
twice, the behaviour will be the same both times. This limitations were “attacked”



with the creation of hierarchic finite state machines (HFSMs), a extension to
traditional FSMs that allows the creation of composite states which contain, inside
themselves, other states and transitions resulting in the creation of a hierarchy of
FSMs; and the creation of Fuzzy FSMs (FuFSM) that add characteristics of fuzzy
logic to FSMs in order to lower the previsibility of actions. All of this being
supported by the creation of visual editors that help the creation and
maintenance of theirs state diagrams.

An example of tools that uses this kind of approach is the
SOFTIMAGE/BEHAVIOUR [28] toolkit, a toolkit for computerized animation that
makes use of HFSMs in order to allow better representation and control of big
real-time systems complexity, as complex crowds for example, allowing the
animator to give intelligence to this crowd and to individual characters inside it. It
also has its own visual tool for visual creation and editing of the HFSMs and
supports a script language that enhances the tool flexibility.

With relation to the RBSs, they presents some advantages, as: they correspond to
the way people usually think about knowledge, are very expressive and allow
the modeling of complex behaviors, model the knowledge in a modular way, are
easy to write (and debug, when compared to decision trees for example) and are
much more concise than the finite stare machines. However, RBSs may have a
large memory footprint, require a lot of processing power and even in some
situations become extremely difficult to debug.

SimBionic [25] presents another approach to the design of AI support software
that matches somewhere in between FSMs and RBSs, by providing a framework
for defining the objects that display behavior within the game world. This
framework is very state-oriented, supporting the creation of complex hierarchical
state systems.

These state systems have several components that can be classified as descriptors
and declarations. Descriptors are identifiers used to represent objects and
behaviors that exist in the game world. SimBionic also describes attributes of
objects as descriptors, for example, a Weapon descriptor could have two son
descriptors Revolver and Rifle, Rifle in turn could have a son AR-15, and so on;
and the gun attributes as weight, ammunition, would also be represented as
descriptors. Declarations are symbolic associations used by the SimBionic project.
These associations consist of actions, predicates (built-in functions that provide
access and evaluation services), behaviors and variables. A behaviour implies the
selection of either another behaviour or an action, and is responsible for the
“decision making” in SimBionic.

As an example of the usage of decision trees we have the AI-implant [2] tool, an
animation control engine that was designed to introduce AI to the computer
game and video media character development process. Essentially, AI.implant
provides autonomous character control for the game engine or animation engine
offering pre-defined behaviors (like "Avoid Obstacles" for example) are assigned
to the “agent” to implement a desired set of actions (preventing a guard from
walking into a wall). Sensors are created for the “agent”, letting it perceive events
in the game world, and based on those events use binary decision trees (BDT) to
choose a course of action. The BDT can be used to create complex decisions of
arbitrary depth. It is even possible to construct a finite state machine (FSM) using
the BDT appropriately. As AI.implant work closely with 3D modeling software, it
also provides functionalities for the placement of waypoints in the terrain to help
the characters path-finding.



These techniques are very powerful, but sometimes they are also too simple.
Alternatives motivated by academic research produced a rich variety of
approaches for the creation of interesting and plausible intelligent agents. But
unfortunately, this approaches tend to be very “heavy”, requiring “state
evaluations” that are very processor intensive for each frame. As, for instance,
deliberative systems, that have goals, a world model e can plan several steps
necessary to achieve the goals, but are heavy and slow; or hybrid systems that
calculate the planning beforehand and make use of rules in the lower levels
(during runtime), but because of this pre-calculation of the plan, do not present
good responses in highly dynamic worlds (as is the case with most computer
game worlds).

Digital games developers need a solution in between the simple finite state
machines and heavyweight complex cognitive models. First of all, it is necessary
to avoid too frequent updates, and to rely in an event based model. In second
place, the new solution needs to avoid presenting too much repetitive
behaviours, exhibiting a variety of actions and reactions but still being
verisimilar/acceptable ones. Third, the solution must provide a simple framework
on which it may be possible to create highly customized new solutions; this
framework shall also allow for scalable development. A possible approach would
be to make use of “anytime planners”, planners that can improve the plan after
each iteration, if there is little CPU time available, the system still manages to be
reactive, and the plan gets to be refined if there is a bigger slice of available
processor time, and also where the plan can be adapted/updated in the case of
changes occurring in the game world, as for instance [8]. There are several
options and approaches related to planning (as the presented one, belief-desire-
intention (BDI)[21], HAP[14] and [15] this one exposing representational planning
techniques to be used as a layer above the artificial intelligence mechanisms
already in place, that explicitly handle the world representations in order to be
able to choose the best behaviours for a given situation) but unfortunately, this
approaches to planning are seldom known/used in computer games
development.

Another separation of approaches could be “Functionality libraries” vs. “Agent
based”, where the functionality library is a set of functions and algorithms, simple
but efficient; and the agent based approach facilitates distribution and flexibility.
The library approach is usually considered the best one because from the set of
functions available, one can create an agent infra-structure, but it is not possible
to turn a agent-based approach into a set of functions to be used as the
developer wants; this without taking into account the fact that choosing an
approach that imposes a certain methodology or architecture to digital games
development may not be viable for some products, platforms or game genres.
And also, there is a great interest in creating a wrapper to make use of a set of
simple functions for the creation of intelligent agents [17].

Some approaches use inference engines to “conclude” what is the best course of
action, one such example of inference engine, initially used in military
simulations, is the Soar [27] architecture which combines the reactivity of stimuli-
response systems with the context sensitive behaviours found in systems that use
FSMs or scripting. In Soar, the knowledge is represented as a hierarchy of
operators. Each level in this hierarchy represents a more specific decision level in
the intelligent agent behaviour. The top level operators represent the agent goals
and behaviour modes. The second level operators represent high level tactics
used to achieve the goals specified in the higher level.



The lower level operators represent the steps (or sub-steps) necessary for the
agent to implement and execute the tactics. The Soar architecture allows the
persistence of the chosen operators as well as the persistence of the agents’
internal memory, what allows the intelligent agents to react taking into account
the environment context.

Yet another distinction can be made between the described functional
approaches and the biologic/evolutionary approaches [7]. An example of such
approach is the one in DirectIA [6] that provides tools and support for the
creation of agents, with behaviours ranging from basic reactions to deep world
state analysis. DirectIA is an agent-centric tool, which makes significant
considerations of how and why a character makes a decision, with inspiration in
the modeling of human and animal behaviours. Using a motivational model, i.e.,
an action selection mechanism that mimics the mechanism in animals. The
DirectIA mechanism handles stimuli, emotion, states, motivations, behaviours and
actions.

Such systems may be seen as a set of motivations that compete until it is decide
which one must be applied to the situation, given the internal and external states,
resulting in an emergent behaviour. The intelligent agents can weight tradeoffs,
learn from their own experience and present behaviours nor specifically
programmed by the game developers.

One can not forget the approaches that make use of machine learning techniques
integrated into the artificial intelligence engine in order to obtain new (possibly
emergent) behaviours [5].

DESIGN AND COMPONENTIZATION
Several issues are of great importance and must be examined when trying to
create an artificial intelligence middleware. For example, in strategy games, it is
necessary to apply AI in a strategy level applied to groups of unities, but it is also
necessary to apply AI to an individual unity in order to have a certain autonomy
without the player direct control.

Low level details are extremely important [19][20] to guarantee a good
performance of the system implementation as well as free the game developer
from the burden of having to implement this solutions every time, as for
example: using event handling instead of polling(the act of continually asking for
a resource until it is available), try to centralize the cooperation of game
managers and execute the artificial intelligence procedures with the lower
possible frequency in order to reduce the processing load, use AI with level-of-
detail (LOD, when an object is in direct view of the player, it has to behave
perfectly, but when it is far from it, the object can have a lower precision), make
use of as much pre-processing as possible (pre-processing allows for the
separation of decision support data from the level design itself, and also allows a
better efficiency in the decision making process. And when combined with a
dynamic action selection model, one gets a more robust and generalized
solution), give preference to emergent behaviours instead of using scripted
solutions. Always paying attention to a clear separation of the AI subsystem from
the rest of the computer game implementation, because we are dealing with
artificial intelligence middleware creation and not with a solution specific to a single
problem.

The AI engine must present an execution cycle like the one presented bellow
[11]:



1. Sense: Access the game world sensorial info

2. Think: Process the acquired knowledge (sensorial info), taking into account
the current game world state and choose an action

3. Act: Execute the actions

In order to achieve this goal, the interface with the game world is a crucial point,
and must follow two simple principles: be as close as possible to the one
available to the human being (or the one that would be available to the entity
being modeled) and have direct access to data structures, avoiding the
unnecessary complexity associated with “simulating” the sense (in order to
accomplish this and still have the AI functionality separated from the game itself,
it will be necessary to write “glue code”, code that will get the game native
structure and convert it to a format that the AI module can understand). For
example, in order to a monster sense the presence of the player character, the
monster must see the player, the interface here is the “see” sense, but it should
not be necessary to have a model of the screen and by applying image
processing techniques try to recognize the player, it should suffice to access the
relevant data that shows if the player is in front of the monster or not and convert
it to a structure recognizable by the artificial intelligence middleware.

The game world is the master simulator; it manages the game state and also
provides services related to it. This services are exactly the sensors and actuators,
the sensors being able to receive events or to perform polling (try to get the
information) if necessary, and the actuators represent the actions (short durations
actions, such as jump or fire a gun) and effectors (actions with a longer duration
and that are subject to game world changes). Another important aspect is the way
in which the game world is modeled, because depending on the game world
structure different interfaces (or glue code) may be necessary, as well as the
cooperation with other game modules, as for example, the physics modeling
engine (which some people consider part of the AI engine) in order to translate
steering behaviours in real movement.

Another option related to game world interfacing would be to establish standard
interfaces for a well defined functionality set (path-finding, influence maps, etc.),
what also faces problems as how to correctly characterize concepts such as path-
finding for example (as cited in [17]) or on what level to define this interfaces, in
a basic level as managing a node list in a A* algorithm implementation or
complete interfaces for problems such as path-planning (that use path-finding)?

The componentization (separation in components) is very similar to the
presented approaches. Most artificial intelligence engines can be categorized as
packs of similar functionalities, layered approaches or semi-independent
components. Some of these packages could be: planners, path-finding, decision
making, actions, sensing, infra-structure, learning, communication, emotions,
motivations, coordination and tactical analysis.

One example of artificial intelligence middleware that is organized as sets of
functionalit ies is  Pensor [18] that is composed of a set of
algorithms/techniques/technologies re-combinable to each individual project.
Pensor has six planners, three of them being optimized path-finders (path-
planners) that take into account terrain analysis information when calculating the
paths; a decision module that implements finite state machines and fuzzy FSMs,
rules and a shell; an actuator module that implements basic physics modeling and
several steering behaviours; a perception module that provides several kinds of



sensors and an infra-structure module that provides support for task priorities and
resource managing for each task, as well as a scripting language interpreter.

DirectIA, that was already presented above, provides different components tightly
grouped, a motivational engine to model the emotions and needs of the
intelligent agents, a behavioral engine to model the agent's decision processes, a
communication engine that supports communication between the agents, a
perception engine, an action engine, and a knowledge engine to store each
agent's representation of the game world. But it may also be considered as a
layered approach, as the high level functionalities provide a agent-based
approach, and the lower level functionalities provide support for commonly used
techniques as path-finding and steering.

Yet another commercial artificial intelligence middleware is RenderWare AI [22]
that presents a more purely layered design focused on the developers, providing
a architectural layer, a services layer, an agents layer (actually it is a behaviour
layer) and a decision layer. The agents layer being a set of behaviours that can be
instantiated by a game character (behaviours such as flee, renged attacj, etc.),
Renderware AI offers a set of C++ classes that the developers can extend and
tweak to create their own agents and also offers FSMs and neural networks for
the characters decisions processes.

Almost every middleware available splits the game objects into two categories,
thinking entities and passive entities to facilitate their representation inside the
game world model.

Other possible components: [11] says clearly that the knowledge base containing
the goals, tactics and independent behaviours of a computer game is its most
important feature. Without that, the second part, the inference engine (the
component responsible for taking the actual decisions), would not be useful at
all. And [13] states that it is extremely valuable to construct a good set of sensors
as a priceless asset in order to improve the player experience interacting with the
game world allowing the creation of much richer environments by the game
developers and designers. There is also Spark! [26] that is a fuzzy logic editor
created to help the use of this technique in games.

An important design issue is who the target user for the tool is. Tools like
SimBionic and AIi.implant for instance are targeted towards visual animators and
game designers, presenting easy to use visual tools often integrated into 3D
modeling software packages and using approaches that do not require
programming language expertise. On the other hand, tools like DirectIA and
Renderware AI are clearly focused on the game developers (specially Renderware
AI) requiring the developers to have a good understanding of the lower level
implementations of the game and often offering source code to be modified by
the developers (not the case for DirectIA though).

CONCLUSION
Many AI middleware solutions are flourishing, both in commercial environments
and academic ones, but little is known about the real possibility of creating a set
of interface standards to ease the creation of artificial intelligence middleware and
how these standards will relate to implementation issues. Other groups (aside
from the game development community and the AI research community), as the
military, are also interested in the establishment of these standards. Cooperation
among the computer games industry and the academy is crucial in this endeavour
for the creation of such standards even if the goals for each community are not
the same.



Another issue that should be investigated is the analysis of the possibilities of
creating some sort of artificial intelligence accelerator hardware (as happened
with 3D graphics cards). It is believed that this could turn AI into a mainstream
area in games and entertainment products, especially in the games console
market.

Much more thought will have to be dedicated (and currently is being dedicated)
to the question of standardizing artificial intelligence interfaces in computer
games (shall they be in source code form? In form of an ontology? Following the
AUML [4]?). Because of these issues, the International Game Developers
Association (IGDA) has set up the AI Interface Standards Committee to develop
such interface standards, the initiative being a joint effort of game AI developers,
middleware representatives and academics [17].

Even with these issues still open, artificial intelligence in games will have a
growing priority in the digital game development process for some time, because
it is still and area little explored but that already showed that can bring great
advances in game design and gameplay.

However, the "not invented here" syndrome (that is very common in the digital
games industry), the fear of not having complete control over the game and a
possible performance hit that may occur due to the AI middleware "engine" or
library are some of the obstacles for the massive adoption of AI middleware by
game development companies. Also, attention must be paid so that the learning
curve for implementing and integrating the AI middleware into a digital game title
might be too high.

Some other areas that deserve special attention and should present a huge
growth in the near future are automatic learning (as the KnoMic-Knowledge
Mimic[11] initiative), a higher interaction with the game characters [29] and
initiatives in intelligent narratives [3] [30] to improve gameplay.
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